
RELATIVE POSITIONING, NETWORK FORMATION, AND ROUTING IN

ROBOTIC WIRELESS NETWORKS

by

Pradipta Ghosh

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

August 2018

Copyright 2018 Pradipta Ghosh



Dedication

To my beloved family and friends.

ii



Acknowledgment

I would like to express my sincere gratitude to many significant individuals for their

continuous support, help, and contributions to my Ph.D. studies.

It is with immense gratitude that I acknowledge the support and help of my

advisor, Professor Bhaskar Krishnamachari. He is an exemplary advisor that a

Ph.D. student can only wish for. He guided me through all stages of my Ph.D., my

success, my failures, and my ups and downs; with equal patience and consideration.

He has been very welcoming towards investigating any interesting promenades both

in academic research and life beyond school. He motivated me to pay equal atten-

tion to work and personal life without neglecting either. His immense dedication

towards research and teaching has always been inspirational to me. I also want to

thank him for having faith in me on numerous occasions when I lacked the con-

fidence and courage. I cannot imagine going through the Ph.D. without having

him as my guide, mentor, and teacher – a true advisor. He is and always will be

someone I look up to as a mentor, researcher, teacher, and above all a kind, patient,

admirable person.

iii



Besides my advisor, I would like to thank Professor Nora Ayanian for her invalu-

able guidance and advice on many aspects of my thesis works. She has helped me

on numerous occasions to clear doubts regarding robotics related problems. I would

also like to thank Professor Murali Annavaram and Professor Ramesh Govindan

for their guidance and advice on academia as well as their insightful comments and

contributions to my thesis. I would also like to thank Professor Andrea Gasparri

for his guidance and advice on a significant portion of my thesis research. He has

been one of the persons who helped me determine my course of actions towards

kick-starting my thesis research.

My sincere thanks also go to other knowledgeable researchers: ANRG members

and Dr. Ranjan Pal. First of all, I want to thank my fellow ANRG member,

colleague and dear friend, Jason A. Tran for all of his hard work and contributions

towards my thesis research as well as for his invaluable support and advice. It was

not possible to conceive some parts of my thesis research without his significant

contributions and support. I also had a valuable experience in our joint effort

towards mentoring undergraduate and masters students. His organizational and

coding skills are something I always look up to. I also want to acknowledge all other

ANRG members for all the academic as well as fun non-academic discussions. I will

cherish every moment I had with you over past couple of years. I really admire and

love the culture we have at ANRG where everyone interacts and bonds like a big

iv



family. I would also like to acknowledge Dr. Ranjan Pal for his valuable opinions

and support throughout my Ph.D.

In addition, I want to extend my sincere thanks to my friends both at USC and

outside USC. I want to particularly thank my very close friend, Pratik Shah, for

being the friend with whom I can talk about almost everything, for always having

my back, for being such a good listener, and always giving me great advises. I

also want to thank my other close friends and roommates: Md. Nasir, Arindam

Jati, Subhayan De, Vishnu Ratnam, and Kosha Talati Shah. I also want to thank

Amrita Kundu for being there in my tough times and supporting me constantly.

I am truly blessed to have such a group of wonderful people as my friend whom I

consider as a part of my family.

The works in this dissertation were supported in part by funding from NSF and

DARPA. I would also like to express my appreciation to the Provost Fellowship

Program and the Ming Hsieh Department of Electrical Engineering for supporting

my tuition and offering stipends during my Ph.D. studies. I would also like to

extend my gratitude to the Ming Hsieh Institute and the USC Graduate Student

Government for supporting my conference travel expenses.

Lastly but most importantly, I want to dedicate this thesis to my family: my

parents, Dr. Pijush Kanti Ghosh and Dr. Chhabi Ghosh, and my brother, Dr.

Prattay Ghosh. Life is very uncertain and short. The family is the most important

thing to me. Thanks for supporting me and helping me become who I am today.

v



Without your support, it would not have been possible for me to come this far let

alone complete my Ph.D. studies. I love you.

vi



Table of Contents

Dedication ii

Acknowledgment iii

List Of Figures xii

List Of Tables xvii

Abstract xix

Chapter 1: Introduction 1

1.1 Robotic Wireless Networks . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 RSSI Models, Measurements, and RF mapping . . . . . . . . 7

1.1.2 Communication Protocols . . . . . . . . . . . . . . . . . . . 8

1.1.2.1 Media Access Control Layer . . . . . . . . . . . . . 8

1.1.2.2 Network Layer . . . . . . . . . . . . . . . . . . . . 9

1.1.2.3 Transport Layer . . . . . . . . . . . . . . . . . . . 10

1.1.2.4 Application Layer . . . . . . . . . . . . . . . . . . 10

1.1.3 Connectivity Maintenance . . . . . . . . . . . . . . . . . . . 11

1.1.4 Communication Aware Robot Positioning and
Movement Control . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.5 Localization and Relative Positioning . . . . . . . . . . . . . 13

1.1.6 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 RSSI Based Relative Position Control . . . . . . . . . . . . . 16

1.2.2 Interference Power Bound Analysis for Network Form-ation
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Routing and Data Collection Protocol . . . . . . . . . . . . 19

1.2.4 Unified Communication Protocol for Control and
Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.5 Passive RF Sensing . . . . . . . . . . . . . . . . . . . . . . . 21

vii



Chapter 2: Background 22
2.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Linear Quadratic Gaussian Control . . . . . . . . . . . . . . . . . . 23
2.3 Backpressure Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 BP Weighing . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 BP Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 BP Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Publish Subscribe Protocol and MQTT . . . . . . . . . . . . . . . . 28

Chapter 3: Related Works 31
3.1 Relative Localization and Tracking . . . . . . . . . . . . . . . . . . 31

3.1.1 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Relative Localization . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 LQG Based Control . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Interference Power Bound for CSMA Based Wireless Network . . . 35
3.3 Data Collection Routing Protocols . . . . . . . . . . . . . . . . . . 37
3.4 Pub-Sub Based Robotic Communication and Control . . . . . . . . 39
3.5 RF Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 4: RSSI Based Relative Position Control for RWN 44
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 The ARREST System . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Proposed LQG Formulation . . . . . . . . . . . . . . . . . . 50
4.3 RSSI Based Relative Position and Speed

Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Distance Observations . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Angle Observations . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2.1 Basic Correlation Method . . . . . . . . . . . . . . 57
4.3.2.2 Clustering Method . . . . . . . . . . . . . . . . . . 57
4.3.2.3 Weighted Average Method . . . . . . . . . . . . . . 58

4.3.3 Speed Observations . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 TrackBot Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2 ARREST System Parameter Setup . . . . . . . . . . . . . . 63

4.4.2.1 Cost Parameters Setup . . . . . . . . . . . . . . . . 63
4.4.2.2 Noise Covariance Matrix Parameters Setup . . . . 64

4.5 Experiments and Performance Analysis . . . . . . . . . . . . . . . . 65
4.5.1 Baseline Analysis via Emulation . . . . . . . . . . . . . . . . 65

4.5.1.1 The Optimistic Strategy vs. The Pragmatic Strategy 66
4.5.1.2 Absolute Distance Statistics . . . . . . . . . . . . . 68
4.5.1.3 Estimation Errors . . . . . . . . . . . . . . . . . . 68

4.5.2 Real Experiment Results: Small Scale . . . . . . . . . . . . . 70
4.5.2.1 The Optimistic Strategy vs. The Pragmatic Strategy 72

viii



4.5.2.2 Estimation Errors . . . . . . . . . . . . . . . . . . 72
4.5.2.3 Tracking Performance . . . . . . . . . . . . . . . . 74

4.5.3 Real Experiment Results : Large Scale . . . . . . . . . . . . 75
4.5.3.1 LeaderBot and TDoA Ranging . . . . . . . . . . . 77
4.5.3.2 Different Experimental Settings . . . . . . . . . . . 80
4.5.3.3 Performance Analysis . . . . . . . . . . . . . . . . 81
4.5.3.4 Multipath Adaptation . . . . . . . . . . . . . . . . 82

4.5.4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.4.1 Raw RSSI Data Analysis . . . . . . . . . . . . . . . 84
4.5.4.2 Different Sensing Modalities . . . . . . . . . . . . . 86

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 5: Interference Power Bound Analysis for Network Forma-
tion Control in RWN 90
5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Outline of the Proposed Solution . . . . . . . . . . . . . . . . . . . 94

5.2.1 Methodology for Mapping from d to SIRX . . . . . . . . . . 94
5.2.2 Methodology for Selecting dmax . . . . . . . . . . . . . . . . 97
5.2.3 Orthogonal Code Bound For Interference Free Network . . . 97

5.3 Identification of Maximum Power Interference Set Cover . . . . . . 100
5.3.1 Dense Random Network . . . . . . . . . . . . . . . . . . . . 100
5.3.2 Interference Estimation for Robotic Router Network . . . . . 105

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 6: Routing and Data Collection Protocol for RWN 119
6.1 The Heat Diffusion Routing: Theory and

Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.1 Link Weighing . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.1.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.1.3 Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 The Heat Diffusion Collection Protocol: From Theory to Reality . . 124
6.2.1 Predecessors . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.1.1 The Collection Tree Protocol . . . . . . . . . . . . 124
6.2.1.2 The Backpressure Collection Protocol . . . . . . . 125

6.2.2 The Heat Diffusion Collection Protocol . . . . . . . . . . . . 126
6.2.2.1 The β Parameter . . . . . . . . . . . . . . . . . . . 127
6.2.2.2 Updating Weights . . . . . . . . . . . . . . . . . . 130
6.2.2.3 Queue Implementation . . . . . . . . . . . . . . . . 131
6.2.2.4 Link Metric Estimation . . . . . . . . . . . . . . . 131
6.2.2.5 Link Switching . . . . . . . . . . . . . . . . . . . . 133

6.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.1 Retransmission . . . . . . . . . . . . . . . . . . . . . . . . . 135

ix



6.3.2 Retry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.3 Queue Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.4 Beacon Timer . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.5 Inbound Packet Filtering . . . . . . . . . . . . . . . . . . . . 138

6.3.6 End to End Delay Calculations . . . . . . . . . . . . . . . . 139

6.3.7 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Real Testbed Experiment Results and
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.1 Variation of the β Parameter . . . . . . . . . . . . . . . . . 142

6.4.2 Modified HDCP vs Unmodified HDCP . . . . . . . . . . . . 145

6.4.3 Performance Comparison with BCP and CTP for Fixed Packet
Generation Rate . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.4 Varying Packet Generation Rate . . . . . . . . . . . . . . . . 150

6.4.5 Low Power Communication Stack Based Experiments . . . . 153

6.4.6 External Interference . . . . . . . . . . . . . . . . . . . . . . 155

6.4.7 Node Failures . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5 Similarity Analysis Between HDCP and BCP . . . . . . . . . . . . 159

6.5.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . 159

6.5.2 Kendall’s Tau Test . . . . . . . . . . . . . . . . . . . . . . . 166

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Chapter 7: Unified Communication Protocol for Control and Sensing
in RWN 169

7.1 The Proposed ROMANO Protocol . . . . . . . . . . . . . . . . . . 171

7.1.1 Requirements: . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1.2 The ROMANO Protocol . . . . . . . . . . . . . . . . . . . . 172

7.1.3 Message Formats: . . . . . . . . . . . . . . . . . . . . . . . 175

7.1.4 ROMANO for Bootstrapping of Robots: . . . . . . . . . . . 176

7.2 Real Implementation and Experimentation: . . . . . . . . . . . . . . 178

7.2.1 Core Implementation: . . . . . . . . . . . . . . . . . . . . . . 178

7.2.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 180

7.2.3 Application Implementation Experiments . . . . . . . . . . . 184

7.2.3.1 ROMANO for control of a group of robots . . . . . 184

7.2.3.2 ROMANO Path Copy . . . . . . . . . . . . . . . . 185

7.2.3.3 ROMANO to Control Peer-to-Peer UDP Commu-
nication . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2.3.4 ROMANO over Internet . . . . . . . . . . . . . . . 187

7.2.4 Outcomes of the Application Specific Experiments . . . . . . 188

7.2.5 Code Complexity Analysis . . . . . . . . . . . . . . . . . . . 189

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

x



Chapter 8: Passive RF Sensing in RWN 193
8.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . 197
8.3 Performance Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 199

8.3.1 Simulation Experiment Results . . . . . . . . . . . . . . . . 199
8.3.2 Real Experiment Results . . . . . . . . . . . . . . . . . . . . 203

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Chapter 9: Conclusion 208

Reference List 210

xi



List Of Figures

1.1 Illustration of a Robotic Wireless Router . . . . . . . . . . . . . . . 3

1.2 Illustration of an RWN where a group of five robots is sensing the en-
vironment around the firefighters to guide them in firefighting while
also providing connectivity . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Illustration of robotic routers where the two humans are not able
to communicate directly due to presence of a wall or some other
blocking object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Illustration of the Kalman Filtering (This figure is adapted from [1]) 23

2.2 Illustration of Publish-Subscribe Communication: A set of publisher
nodes publishes their data to a broker by associating the data with
a topic. The broker relays the data to all the subscribers of that topic 29

4.1 The TrackBot Prototype. This prototype system is built using com-
mercial off-the-shelf products. The black lines illustrate the wire
connections between different hardware components. . . . . . . . . 46

4.2 Global and Local Coordinate System Illustration . . . . . . . . . . . 47

4.3 The ARREST Architecture . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Proposed LQG Controller System . . . . . . . . . . . . . . . . . . . 51

4.5 Illustration of Different Components for Relative Speed Observation 60

4.6 (a)-(b)Tracking Performance Comparison Among Different Speed
Estimation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xii



4.7 Emulation Based Performance: (a) Absolute Distance Estimation
Errors (in m), (b) Absolute Angle Estimation Errors (in degrees),
and (c) Absolute Speed Estimation Errors (in m/s) . . . . . . . . . 69

4.8 Full Path Traces from Small Scale Real World Experiments . . . . . 71

4.9 Real Experiment Based Performance for Small Scale: (a) Absolute
Distance in Meters, (b) Absolute Distance Estimation Error in Me-
ters, and (c) Absolute Angle Estimation Error in Degrees . . . . . . 73

4.10 Illustration of a 3pi LeaderBot. This robot is used as the leader robot
as well as the TDoA localization anchor for large-scale experiments. 76

4.11 TDOA based Localization System Performance: (a) Distance Esti-
mation Errors and (b) Angle Estimation Errors . . . . . . . . . . . 80

4.12 Real Experiment Based Performance for Large Scale: (a) Absolute
Distance in Meters, (b) Absolute Distance Estimation Error in Me-
ters, and (c) Absolute Angle Estimation Error in Degrees . . . . . . 81

4.13 Full Path Trace for a Sample Large Scale Experiment (Blue =⇒
Leader, Red =⇒ TrackBot) . . . . . . . . . . . . . . . . . . . . . . 83

4.14 Raw Data Analysis: (a) Distance Estimation Errors and (b) Angle
Estimation Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.15 Estimation Performance for Varying Sampling Rate: (a) Distance
Estimation Errors and (b) Angle Estimation Errors . . . . . . . . . 86

4.16 Performance of the ARREST System in Terms of Controlled Esti-
mation Errors: (a) Fixed Angle Estimation Error, and (2) Fixed
Distance Estimation Error . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Illustration of the Interference Set Covers For Estimation of Inter-
ference Upper Bound in a Dense Network . . . . . . . . . . . . . . . 101

5.2 Illustration of the Highest Power Intra-Flow Interference Set Cover 107

5.3 Illustration of the Multiple Flow Interference Estimation (Blue Nodes:
Intra-Flow Interferer, Red Nodes: Inter-Flow Interferer) . . . . . . . 108

xiii



5.4 (a) Validation of Estimated Interference Power (Top) and SIR (Bot-
tom) Bounds in dB, for Dense Network with No Fading (b) Proba-
bility that Actual SIR is Lower than the Estimated Minimum SIR
in Presence of Log-Normal Fading with Variance σ2 = 4 (c) Proba-
bility that Actual SIR is Lower than the Estimated Minimum SIR
with NO Fading but in Presence of 10 Orthogonal Codes . . . . . . 113

5.5 For a 3 Flow Network: (a) Validation of Estimated Interference
Bound (Top) and SIR Bound (bottom) with No Fading (b) Illus-
tration of Less Number of Robots to be Deployed with Our Applica-
tion Specific Bound (No Fading) (c) Probability that Actual SIR is
Lower than the Estimated Minimum SIR with Log-Normal Fading
(Variance σ2 = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1 Real Experiment Testbed Topology . . . . . . . . . . . . . . . . . . 140

6.2 Performance Plots of HDCP Implementation for 0.5 PPS with Dif-
ferent Values of β: (a) Average Goodput to Sink (b) End-to-End
Delay CDF Plot for Mote 38 (c) Average ETX per Packet (Top)
and Average Hop Count (Bottom) (d) Average End-to-End Delay
(Bottom) and Average Queue Size for Each Node (Top) . . . . . . . 144

6.3 Performance Comparison between Modified and Unmodified HDCP
Implementation with β = 1 for 0.25 PPS: (a) Average Goodput (b)
Average ETX per Packet (Top) and Average Hop Count (Bottom)
(c) Average End-to-End Delay (Top) and Average Queue Size (Bottom)146

6.4 Comparison Plots between HDCP, BCP and CTP for 0.5 PPS: (a)
Average Goodput to Sink (b) Average ETX (Top), Average Hop
Count to Sink (Bottom) (c) Average End-to-End Delay (Top) and
Average Queue Size (Bottom) . . . . . . . . . . . . . . . . . . . . . 148

6.5 (a)Variation of Goodput for Varying Offered Load (b) Variation of
Average End to End Delay for Varying Offered Load (c) Variation of
Average Path Cost in Terms of ETX (Top) and Average Hop Count
(Bottom) for Varying Offered Load . . . . . . . . . . . . . . . . . . 151

6.6 Performance Comparison of HDCP with BCP and CTP for a Low
Power Communication Stack: (Top) Goodput to Sink, (Bottom) Av-
erage ETX Path Costs to Sink . . . . . . . . . . . . . . . . . . . . . 153

xiv



6.7 Thirty Second Windowed Average Sourced Packet Delivery Ratio for:
(a) Synthetically Generated Interfering 802.15.4 Channel 26 Traffic
(b) Real Interference Scenario on 802.15.4 Channel 13 . . . . . . . . 156

6.8 Thirty Second Windowed Average Sourced Packet Delivery Ratio for
10% Node Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.9 A Simple Topology For Ranking Similarity Analysis Between HDCP
and BCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.10 (a) Empirical CDF of the Link ETX Values for Our Testbed (b)
Empirical CDF of the Average ETX per Link for the Shortest Paths
Between Any Pair of Nodes . . . . . . . . . . . . . . . . . . . . . . 162

6.11 Variation of Kendall’s Tau Distance between HDCP and BCP Neigh-
bor Rankings for Different Values of β . . . . . . . . . . . . . . . . 167

7.1 (Left) The ROMANO Network Stack, (Right) ROMANO Data Types173

7.2 ROMANO Implementation Stack on Pololu 3pi . . . . . . . . . . . 179

7.3 Our Testbed Architecture for the ROMANO Experimentation . . . 181

7.4 Scalability Analysis of the ROMANO Protocol . . . . . . . . . . . . 183

7.5 Illustration of using ROMANO to control peer-to-peer UDP commu-
nication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.6 Application of ROMANO for communication between two robotic
networks connected over internet. . . . . . . . . . . . . . . . . . . . 187

8.1 Illustration of our bistatic radar equivalent system . . . . . . . . . . 197

8.2 Probability heat map of different possible positions of the reflector
for known position of transmitter (0, 3) and receiver (0, 0). . . . . . 201

8.3 Error Statistics for varying distance between Tx and Rx while the
reflector is kept fixed at (3, 3) . . . . . . . . . . . . . . . . . . . . . 202

8.4 Error statistics for varying distance to the reflector from the receiver
while the Tx is kept fixed at (0, 3) . . . . . . . . . . . . . . . . . . . 202

xv



8.5 Real System for Experimentation: We only employ the rotating plat-
form with the directional antenna (left) of the TrackBot (right) de-
veloped in the course of Study 1. . . . . . . . . . . . . . . . . . . . 204

xvi



List Of Tables

2.1 MQTT-SN Publish Message Format . . . . . . . . . . . . . . . . . . 29

4.1 ARREST Hardware Implementation . . . . . . . . . . . . . . . . . 61

4.2 Summary of Emulation Results . . . . . . . . . . . . . . . . . . . . 70

4.3 Summary of Small Scale Real-World Experiments . . . . . . . . . . 75

4.4 Summary of Large Scale Real-World Experiments . . . . . . . . . . 84

5.1 General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Interference Set Cover Node Locations for a Dense Network . . . . 103

5.4 Interference Set Cover Node Locations for a Flow Based Network . 111

6.1 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Contrasting HD policy with V-parameter BP policy (adapted from [2])123

7.1 ROMANO Message Format . . . . . . . . . . . . . . . . . . . . . . 175

7.2 ROMANO Message Formats . . . . . . . . . . . . . . . . . . . . . . 177

7.3 Movement Control Types . . . . . . . . . . . . . . . . . . . . . . . . 177

7.4 Message Delivery Ratio for Different Message Generation Rates . . 182

7.5 Code Complexity Analysis in Terms of Lines of Codes . . . . . . . . 190

xvii



8.1 Simulation experiment based error statistics (in meters) for unknown
transmitter and unknown reflector . . . . . . . . . . . . . . . . . . . 203

8.2 Error statistics for real-world experiments in meters . . . . . . . . . 206

xviii



Abstract

Robotic Wireless Networks (RWN) is one of the cutting-edge domain of research

that focuses on a range of collaborative autonomous operations such as exploration

of an unknown terrain, fire-fighting, temporary wireless communication backbone

deployments, and extending existing communication infrastructures. Such applica-

tion contexts with a group of robots impose a diverse set of stringent requirements

to the system designers that include but not limited to efficient infrastructure-

less localization, positioning, movement control, connectivity maintenance, and

lightweight communication protocols. In this thesis, we identify five key problems

in the field of RWN and provide the necessary solutions to meet the end-goal of

building a scalable, self-sustained, energy efficient, and controllable RWN system.

The first research problem that we focus on is related to the localization of

robots in any random deployment arena. A real-world deployment of an RWN

relies on the availability of a scalable localization system in the application arena

for effective operation. While GPS can provide sufficiently accurate positioning in

open outdoor setting, effective operations of an RWN demands an alternative and

sufficiently precise relative or absolute localization scheme for an indoor cluttered

xix



setting where GPS based global positioning is very flaky and unreliable. Most of

the existing RF based alternative indoor localization schemes rely on the presence

of an infrastructure for trilateration based localization which, thereafter, restricts

the RWN application domain. To this end, we propose Autonomous RSSI based

RElative poSitioning and Tracking (ARREST), an RSSI based relative localization

and proximity maintenance system for RWN that does not require any pre-deployed

infrastructure. To demonstrate the practicality as well as analyze the performance,

we have developed a real prototype and performed extensive experimentation.

The second key problem that we look into is related to the application of an

RWN to support a temporary communication backbone with certain communica-

tion guarantees in terms of throughput, loss rate, and latency in a dynamic envi-

ronment. It is often presumed in such contexts that a “sufficient” number of robots

are present in the network. However, to our knowledge, none of the existing works

has addressed this crucial RWN system parameter. In our second study, we first

derive an upper bound on the spacing between any transmitter-receiver pair by

exploiting the properties of Carrier Sense Multiple Access (CSMA) and thereafter,

map this bound to a lower bound on the number of robots to deploy.

In the course of our third study, we look into the classic problem of routing but

with the sole focus on fulfilling the RWN specific requirements in terms of efficiency,

reliability, timeliness, and scalability. Only a few existing solutions can fulfill all

these requirements (mainly the delay requirement) imposed upon the networking

xx



protocol stack of an RWN. To this end, we propose the Heat Diffusion Collection

Protocol(HDCP), a backpressure based routing protocol that uses the classic equa-

tions related to the heat flow from a highly heated region to a less heated region

towards queue based dynamic packet routing. Through an extensive set of real-

world experiments, we demonstrate that the HDCP algorithm can guarantee lower

delay and higher throughput compared to the existing contenders under a diverse

set of conditions.

The robots in an RWN also inherently work under limited communication band-

width and heavy power constraints which in turn put constraints on the commu-

nications hardware and protocols. Therefore, in our fourth study, we concentrate

on the design of the Robotic Overlay coMmunicAtioN prOtocol (ROMANO), an

efficient lightweight application layer communication protocol with low bandwidth

and energy requirement for sensing data collection and control. ROMANO is over-

laid on top of the well-known Message Queuing Telemetry Transport for Sensor

Nodes (MQTT-SN) publish-subscribe protocol to provide a simple and unified ab-

straction of control and sensing data communication. Through a set of real-world

experiments with real prototypes, we demonstrate different features of ROMANO

as well as analyze the performance.

In the fifth and final study, we look into a problem of passive RF mapping by em-

ploying the hardware developed for ARREST system experimentation. The goal of

this study is to exploit a received directional RSSI pattern from an omnidirectional

xxi



transmitter towards passive localization of unknown RF reflecting surfaces/objects

in an unknown environment. To this end, we propose the concept of miniRadar

which is a low power IEEE 802.15.4 based bi-static radar type system for RWN.

In summary, we have developed systems and algorithmic solutions for an RWN

that address five cutting-edge problems in an RWN. The proposed solutions and

systems will guide the design of an integrated real-world RWN system with self-

sustained localization and relative position control, efficient routing with lower de-

lay, simple abstraction of control and communication, and passive RF sensing.

xxii



Chapter 1

Introduction

Robotics has been a very important and active field of research over the last couple

of decades with the main focus on seamless integration of robots in human lives to

assist and to help human in difficult, cumbersome jobs such as search and rescue

in disastrous environments [3, 4]. Recent advancements in affordable technology

and hardware miniaturization have partly materialized this goal. Following this

trend, researchers have been motivated to look into the collaborative aspects where

a group of robots can work in synergy to perform a set of diverse tasks such as

collaboratively moving an object [5, 6]. To this end, networked/swarm robotics [5],

robot augmented wireless communication backbones [7, 8], and robotic wireless

networks [9, 10] has become cutting-edge fields of research. The controllability

of the wireless nodes has opened up a whole new dimension to the networks and

wireless communication researchers. The applicability of such systems includes but

not limited to fire fighting [3, 11], disaster management [12, 13], search and rescue

missions to sense environments with limited visibility [4, 14, 15], and smart home
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environments [16]. This cutting-edge research domain is called by many different

names such as “Wireless Robotic Networks”, “Robotic Wireless Sensor Networks”,

“Wireless Automated Networks”, and “Networked Robots”. In this thesis, we will

refer to this field as “Robotic Wireless Networks (RWN)”.

This new area of research has posed a plethora of research questions related to

localization, coordination, consensus, maintaining link qualities and connectivity,

and distributed decision making and control. To design a fully functional RWN

system, one needs to take each of these questions into consideration. In the fol-

lowing section, we provide a brief overview of these research problems along with

a formal categorization. Moreover, we provide sufficient background to understand

the novelty and importance of the works presented in this thesis.

1.1 Robotic Wireless Networks

First of all, let us define and illustrate the field of Robotic Wireless Network (RWN).

According to the IEEE Society of Robotics and Automation’s Technical Commit-

tee [17]: “A ‘networked robot’ is a robotic device connected to a communications

network such as the Internet or LAN. The network could be wired or wireless and

based on any of a variety of protocols such as TCP, UDP, or 802.11. Many new

applications are now being developed ranging from automation to exploration. There

are two subclasses of Networked Robots: (1) Tele-operated, where human supervi-

sors send commands and receive feedback via the network. Such systems support
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research, education, and public awareness by making valuable resources accessible to

broad audiences; (2) Autonomous, where robots and sensors exchange data via the

network. In such systems, the sensor network extends the effective sensing range

of the robots, allowing them to communicate with each other over long distances

to coordinate their activity. The robots, in turn, can deploy, repair, and maintain

the sensor network to increase its longevity, and utility. A broad challenge is to

develop a science base that couples communication to control to enable such new

capabilities.” We define an RWN as an autonomous networked multi-robot sys-

tem that aims to achieve sensing and mainly communication-related goals while

fulfilling certain communication performance requirements via cooperative control,

learning, and adaptation.

Wireless	  Comm.	  
Module

Robot

Sensors

Figure 1.1: Illustration of a Robotic Wireless Router
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Ideally, each node of a typical RWN should have controlled mobility, a set of

sensors, and wireless communication capabilities (as illustrated in Figure 1.1). We

refer to such nodes (devices) as “Robotic Wireless Routers”. Nonetheless, an RWN

can also have some nodes with just sensing/control and wireless communication

capabilities but without mobilities. Note that, every node of an RWN must have

wireless communication capabilities. Moreover, an RWN is typically expected to

be able to fulfill or guarantee certain communication performance requirements

enforced by the application contexts such as minimum achievable bit error rate

(BER) in every link of the network.

The existing research works related to RWN can be subdivided into two broader

genres. The first genre focuses on generic multi-robot sensing systems with real-

istic communication channels (i.e., including the effects of fading, shadowing etc.)

between the robots. To clarify, these are mostly the existing works in the robotics

literature on multi-robot systems but with practical wireless communication and net-

working models. One application context of such an RWN is in robot-assisted fire-

fighting where the robots are tasked to sense the unknown environments inside

rubble to help the firefighters navigate. Now, if the robots are not able to maintain

a good connectivity among themselves or to a mission control station, the whole

mission is voided. Refer to Figure 1.2 for an illustration of such contexts where a

group of robots is sensing an unknown environment to guide the human movements.

In Figure 1.2, the network consisting of five robots and two firefighters needs to
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be connected all the time and also needs to have properties such as reliability and

lower packet delays. To make the problem more complex, the robots might also

need to continually maintain certain proximity to the firefighters. Thus, we need

a class of multi-objective motion control algorithms that will optimize the sensing

and exploration task performance, and will also ensure the connectivity, proximity,

and the performance of the network. Some of the main identifiable keywords in this

genre of works are connectivity maintenance, efficient routing to reduce end to end

delay of packets, proximity maintenance, localization, and multi-objective motion

control and optimization.

Figure 1.2: Illustration of an RWN where a group of five robots is sensing the
environment around the firefighters to guide them in firefighting while also providing
connectivity
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The second genre of RWN research focuses on the application of robotic wire-

less routers to create and support a temporary communication backbone between

a set of communicating entities. The main theme of these works is to exploit the

controlled mobility of the robotic routers to support certain communication-related

goals such as deploying a temporary communication backbone. In Figure 1.3, we

present an example illustration where a set of two robotic routers form a commu-

nication relay path between two humans (e.g., two fire-fighters) who are unable

to communicate directly. There exists a vast literature on multi-agent systems in

robotics and control community that apply simple disk models for communication

modeling and, subsequently, apply graph theory to solve different known problems

such as connectivity and relay/repeater node placements. However, most of these

existing works lack the inclusion of the effects of fading and shadowing in the com-

munication models which is likely to significantly increase the complexity of the

problems as well as the solutions. Some of the main challenges in this genre of

RWN research are: link performance guarantee (in terms of Signal to Interference

plus Noise Ratio, SINR, or Bit Error Rate, BER), optimized robotic router place-

ments and movements in a dynamic network, non-linear control dynamics due to

inclusion of network performance metrics into control loop, and localization. A

special case of this would be robot-assisted static relay deployments, where the

robots act as carriers of static relay nodes and smartly place/deploy them to form

a communication path/backbone.
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Figure 1.3: Illustration of robotic routers where the two humans are not able to
communicate directly due to presence of a wall or some other blocking object

Next, we identify a set of major research problems and areas related to RWN as

follows. Note that, it is by far not the exclusive set of research problems in RWN.

1.1.1 RSSI Models, Measurements, and RF mapping

RF measurement-based modeling, sensing, and mapping is an important topic of

research related to an RWN. In an RWN, it is often important to estimate and

monitor the quality of the communication links between the nodes (in terms of Bit

Error Rate (BER), Signal to Noise plus Interference Ratio (SINR) etc.) in order

to satisfy the communication-related requirements.1 For practicality, these estima-

tions should be either partly or fully based on online RF sensing such as temporal

1Note that RF-based communication is the standard mode of communication in RWN for
obvious reasons.
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RSSI measurements in a deployment. In some application contexts of RWN, the

sole goal of an RWN is to sense and formulate an RF map of an environment to be

processed or exploited later on [8].

1.1.2 Communication Protocols

Similar to any wireless networks and sensor networks, efficient communication pro-

tocols are of utmost importance in an RWN. Following the standard five layered

Internet model for communication, we present a summary of the communication

protocol research in RWN.

1.1.2.1 Media Access Control Layer

Media Access Control (MAC) protocols deal with proper distributed access to the

physical medium among wireless devices, device to device communication, fram-

ing, and error corrections. While most of the classical MAC layer modules and

protocols [18] are applicable to RWN, the extra dimension of controllability has

opened up opportunities for a new class of MAC protocols in RWN. Hollinger et

al. [19] presented such a MAC protocol for robotic sensor networks in acoustic

environments. There also exist works related to mobile sensor networks which use

predicted mobility patterns such as pedestrian mobility or vehicular mobility to
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design efficient and application-context-specific MAC protocols [20, 21, 22]. In con-

trast, the mobility of the nodes in RWN are controlled and, thus, can be exactly

known or predicted with higher accuracy.

1.1.2.2 Network Layer

The main protocols concerning network layer of an RWN pertain to routing and

data collection. Routing in an RWN can be considered same as in Mobile Adhoc

Networks (MANET) but with an extra advantage of controllability. While the ex-

isting well-known algorithms in MANET such as the Ad-hoc On-demand Distance

Vector (AODV) [23, 24], Dynamic Source Routing (DSR) [25, 26], Optimized Link

State Routing (OLSR) [27], and B.A.T.M.A.N. [28] can be applied to an RWN,

they do not take advantage of the controlled mobility feature in RWN. The con-

cept of RWN has opened up the door to a new class of routing protocols that

incorporates the controlled mobility of the nodes in the routing decisions for more

effective communication. Moreover, the end to end delay reduction (mainly for

control packets) and reliability improvement have become of prime interests. De-

layed or missing packets can result in an improper collaborative movement control

and task completion in an RWN. To this extent, some researchers have modified

existing routing solutions to adapt to a robotic network and proposed completely

new routing solutions as well [29]. Nonetheless, it remained to be one of the less

explored areas in RWN.
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1.1.2.3 Transport Layer

In the field of RWN, the researchers are yet to significantly focus on the transport

layer protocols. Till date, researchers employed traditional transport layer protocols

such as TCP, UDP, or some MANET transport layer protocols for robotic networks,

without taking advantage of the controlled mobility. Conversely, controllability

requires highly reliable, low delay, and error-free communication between robots,

which is not possible using original TCP or UDP and requires special transport

layer protocols. The work of Douglas W. Gage on the MSSMP Transport layer

protocol (MTP) [30] is mentionable in this context. In summary, the transport

layer related research on RWN is an open area with a major focus on reliability

and delay performances.

1.1.2.4 Application Layer

For proper operation of an RWN, one requires efficient application layer protocols

that can efficiently handle control related traffic as well as regular traffic (e.g., sen-

sor data). Some key requirements from such application layer protocols are a lower

delay for control traffic, lightweight and low bandwidth consumption for scalabil-

ity, and low power consumption for energy efficiency. Moreover, the abstraction

provided to the user of the RWN should be simple and modular such that an end

user can easily use and customize it for different applications contexts. The most

popular state-of-the-art application layer method for effective control of robots and
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effective collection of sensor data relies on the Robot Operating System (ROS) [31].

However, the traditional ROS-based solutions require high enough compute power

to run a full-fledged Linux OS. Moreover, ROS uses XML-RPC which relies on

HTTP, a protocol with large header sizes that in turn consume more bandwidth

and power. This makes ROS unsuitable and unoptimized for a network of battery-

operated robots operating with low-power embedded processors on a shared wireless

communication channel. Thus, application layer protocol research is an important

and promising area of research for building RWN systems.

1.1.3 Connectivity Maintenance

In any collaborative network of robots, it is important to maintain a steady com-

munication path (direct or multi-hop) between any pair of nodes in the network

for an effective operation. This problem, traditionally referred to as connectivity

maintenance problem, in very well studied by the robotics research community.

In the connectivity maintenance problem, the main goal is to guarantee the exis-

tence of end-to-end paths between every pair of nodes. The interaction between

pairs of robots is usually encoded by means of a graph, and the existence of an

edge connecting a pair of vertexes represents the fact that two robots can exchange

information either through sensing or communication capabilities. Notably, the con-

nectivity of the interaction graph represents a fundamental theoretical requirement

for proving the convergence of distributed algorithms in a variety of tasks, ranging
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from distributed estimation [32, 33, 34] to distributed coordination and formation

control [35, 36, 37]. In the context of robotic networks, where the connectivity of

the interaction graph is strictly related to the motion of the robots, a fundamental

challenge is the design of distributed control algorithms which can guarantee that

the relative motions of the robots do not result in a network partitioning, by rely-

ing only on local information exchange. Two possible versions of the connectivity

maintenance problem can be considered: local connectivity and global connectivity.

The local version of the connectivity maintenance problem focuses on the preser-

vation of the original set of links of the graph encoding the pairwise robot-to-robot

interactions to ensure its connectedness [38, 39, 40]. The global version of the

connectivity maintenance problem focuses on the preservation of the overall graph

connectedness, i.e., links can be added or removed as long as this does not prevent

the interaction graph to remain connected over time [41, 42, 43, 44, 10].

1.1.4 Communication Aware Robot Positioning and

Movement Control

As mention earlier, one of the application contexts of RWN is in supporting tem-

porary communication backbones [45, 46]. One such application scenario involves

the use of a set of ‘robotic routers/relays’ to form a communication path between

a set of ‘communication endpoints’. The communication endpoints are pairs of

nodes/devices in the network that are willing to communicate but unable to reach
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each other. The communication endpoints can be mobile or the environment can

be dynamic with changing communication link properties. The communication

endpoints might have certain communication requirements such as min achievable

data rate, high throughput, and lower delay [7, 47]. The most important research

question in such contexts is to devise a control system that adapts the positions of

the robotic routers throughout the period of deployment to optimize the network

performance while optimizing the movements as well. Therefore, the main goal of

this class of work is continuous joint optimization of the robotic movements and the

wireless network’s performance. Moreover, the router placement controller should

also be able to support network dynamics such as node failures and change in the

set of communication endpoints. This problem involves direct relations with many

other research pieces of RWN such as connectivity maintenance, communication

link modeling, and localization.

1.1.5 Localization and Relative Positioning

The problem of localization is very well-known in the contexts of sensor net-

works and distributed robotics. The state-of-the-arts on localization are very ma-

ture [48, 49, 50, 51]. Since the field of RWN mainly deals with the sensing of the

environment as well as positioning of the robotic routers, localization is definitely

one of the major problems in the field of RWN. The concept of ‘localization’ is to

locate a node in a deployment arena with respect to a reference frame or a reference
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location. A commonly used system called the Global Positioning System (GPS) lo-

calizes objects in terms of their latitudes and longitudes. However, GPS is known to

not work properly in cluttered or indoor environments. Thus, a bulk of the target

application contexts of RWN require an alternate and efficient localization scheme

for indoor environments such as RF-based localization. Nonetheless, to make the

problem more intense, in some of the application scenarios of an RWN such as fire-

fighting in a dynamic environment, there might not exist any fixed infrastructure

to support traditional alternative RF based trilateration solution for localization.

While absolute locations are much important, a relative localization between the

nodes in the network is sufficient in many of such contexts. For example, consider

a scenario where a group of robotic routers is employed to connect a moving target

with a base station. In such contexts, the robots form a chain where each robot

positions itself with respect to its neighboring nodes only. Relative positions with

respect to the neighboring nodes are enough for a node’s movement control decisions

in this context. The relative position is also of utmost importance in application

contexts that require proximity maintenance between nodes/devices where prox-

imity can be defined as maintaining certain thresholded distance. Therefore, the

main focus of localization research in RWN is towards relative localization in an

arena with none or limited localization infrastructure.
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1.1.6 Edge Computing

Most of the robots/drones nowadays come with low power compute devices such as

Raspberry Pi3. This has made possible the extension of edge or fog computing [52]

to a network of robots. Edge computing focuses on exploiting all the devices near

end users to comply with the skyrocketing demand for computationally intensive

applications such as image processing and voice recognition towards autonomy and

personalized assistance. To avoid unnecessary network overhead and delays, edge

computing systems execute the required computation either partially or fully in the

edge devices rather than transferring the responsibility to a remote central cloud.

With drones and personal robots becoming ubiquitous near end users, it has opened

up the opportunity of employing a network of robots (mainly drones) as the edge

cloud [53] for application such as real-time video processing and streaming [54].

This demands for distributed algorithms and frameworks for edge computing that

can optimally leverage the available compute nodes in an RWN for timely processing

of the data.

1.2 Our Contributions

In Section 1.1, we discussed six major research areas in the cutting-edge field of

robotic wireless networks. In this thesis, we contribute to five key problems per-

taining to robotic wireless networks that fall along these areas of research:
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• RSSI Based Relative Position Control

• Interference Power Bound Analysis for Network Formation Control

• Routing and Data Collection Protocol

• Unified Communication Protocol for Control and Sensing

• Passive RF Sensing

1.2.1 RSSI Based Relative Position Control

In our first study, we delve into the problem of relative location estimation and

tracking/following of a moving target. This problem pertains to the research areas

of localization, relative positioning, and movement control. For a collaborative

work environment, the robots in an RWN need to properly localize and position

themselves with respect to each other or a human. There exist many scenarios in

indoor and cluttered environments where traditional GPS signals are limited, such

as disaster operations in large cities or underground operations. While there are

many camera and range-finder based systems for localization and tracking of moving

objects [55, 56], the effectiveness of these sensors crumbles when visibility deterio-

rates or direct line of sight does not exist [57]. Moreover, the use of these types of

sensors as well as the processing of their data, namely image processing, increase

the form factor and power consumption of the robots which inherently always work
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under power constraints. Thus, we need an alternative, cheap, and scalable solu-

tion with low processing power requirements to tackle low visibility contexts and

cluttered environments. Among the alternatives, RF-based localization techniques

are very popular [58]. However, most of these localizations schemes require a set of

static reference nodes which might not exist in the target application contexts. To

this extent, we propose Autonomous RSSI based RElative poSitioning and Track-

ing (ARREST), the first-ever (to our knowledge) pure RSSI based single node RF

sensing system for relative location estimation (with decimeter level accuracy) and

tracking/following of a moving object that can be implemented using commodity

hardware. In our proposed system, the target, which we refer to as the Leader,

carries an RF-emitting device that sends out periodic beacons. The tracking robot,

which we refer to as the TrackBot, employs an off-the-shelf directional antenna,

novel relative position and speed estimation algorithms, and a Linear Quadratic

Gaussian (LQG) controller to measure the RSSI of the beacons and control its

maneuvers. This system is further detailed in Chapter 4. This system is useful

in a wide range of RWN application contexts such as fire-fighting or smart home,

where the robots stay within the proximity of a human or another robot to provide

a range of service such as sensing, data streaming, guiding, and packer relaying.

By extending to multiple pairs of chained leader-follower robots, where each node

can act either or both as leader and follower, this system can also be employed
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to maintain certain distances between router nodes in a context of robotic router

deployment.

1.2.2 Interference Power Bound Analysis for Network Form-

ation Control

In our second study, we focus on answering one key question in the design of a multi-

robot system that can self-organize to maintain a dynamic wireless network with

acceptable link qualities: is there a lower bound on the number of robots needed to

deploy to guarantee the link quality requirements such as minimum Bit-Error-Rate

(BER) and minimum acceptable Signal to Interference-Noise Ratio (SINR)? This

problem directly falls under the category of communication aware robot position in

RWN. Based on our literature survey, we discover that while there exist some works

on robotic routers [7, 59], none of them (to the best of our knowledge) answer this

question which is fundamental to the deployment of an RWN. In this study, we

first prove that in any CSMA based RWN, the interference power is upper bounded

while achievable SINR is lower bounded. Next, we use the interference and SINR

bounds to show that the required number of robots is also lower bounded given

the target link performance requirements. We detail the process of mapping target

link performance requirements into this bound in Chapter 5. This work will guide

system developer to choose an appropriate number of robots to deploy as well as

to get an idea of the performance limits of the deployed networks.
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1.2.3 Routing and Data Collection Protocol

In the third study, we explore the problem of data collection and routing in an

RWN. While the links are controllable, they still suffer from traditional issues such

as interference, varying link qualities, and node failures. Moreover, in a network

of robotic routers, the set of active links changes constantly. We focus on a Back-

pressure routing algorithm called the Heat Diffusion (HD) algorithm [2], due to

its promising performance guarantees without maintaining a routing table, and its

ability to easily adapt to mobile environments. The core of this algorithm lies in

the classical Heat transfer equations where heat flows from a heated region to a less

heated or cold region. The HD algorithm uses the analogy of the heat propagation

in collecting data from a source to a destination. To this end, we implement a

practical version of the theoretical HD algorithm in Contiki OS [60], which we refer

to as the Heat Diffusion Collection Protocol (HDCP) and analyze its performance

for a varying set of network conditions in static settings, explained in Chapter 6.

The real world experiments demonstrate promising routing properties such as lower

delay compared to its alternatives and adaptability in the dynamic environment

which makes HDCP a competent routing protocol for RWN.

1.2.4 Unified Communication Protocol for Control and

Sensing
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In the course of our fourth study, we focus on another important research problem

in RWN that pertains to the application layer protocol research. For efficient oper-

ation of an RWN that consists of a wide range of battery-constrained heterogeneous

robots operating on a shared limited bandwidth channel, we require lightweight,

low-power. low bandwidth consuming application layer protocols. To this end,

we noticed that the traditional solutions, mainly based on the well-known Robot

Operating System (ROS), fall short due to the dependency on heavy bandwidth

and power consuming protocols such as XML-RPC. To this end, we propose the

Robotic Overlay coMmunicAtioN prOtocol (ROMANO) which is a novel lightweight

overlay networking protocol for sensing and control of a set of heterogeneous robots

that build upon the cutting-edge lightweight publish-subscribe Internet of Things

(IoT) protocol called the Message Queuing Telemetry Transport for Sensor Nodes

(MQTT-SN) [61]. ROMANO employs the concept of “topics” from the MQTT-SN

communication protocol to create an overlay network of robots where each robot

subscribes/publishes to a set of control and sensing related topics (e.g., gyroscope,

proximity, location, speed, movement control instructions, etc.). ROMANO can

change and control the topic subscriptions of different robots to control the RO-

MANO communication endpoints for different types of communication: one to one,

one to many, many to many, or many to one. This is further detailed in Chapter 7.
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1.2.5 Passive RF Sensing

In the fifth and final study, we look into the problem of passive RF sensing in

an unknown environment using the concept of a bistatic radar [62]. Researchers

have applied RF signal in many sensing and mapping contexts including but not

limited to robotic mapping of unknown areas [63], indoor localization [48], and see

through capabilities [8]. In this study, we propose a passive RF mapping system

with a single rotating directional antenna that scans the environment for different

orientation of the antenna and collects a set of directional RSSI samples from a

single omnidirectional transmitter. Next, we feed these directional RSSI samples in

form of an RSSI vector to an MLE based estimation module that iterates through

different potential combinations of the transmitter and reflectors locations to find

the location combination that is most probable to generate the collected RSSI

vector. We employ the TrackBot prototype from Study 1 to perform a set of

simulation and real-world experiments to prove the concept and to analyze the

performance of the MLE based estimation algorithm. This system is detailed in

Chapter 8. This passive sensing technique is meant to be combined with the RF-

based relative localization and positioning method from Study 1 to make of use of

the same hardware for a dual purpose: localization and mapping.
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Chapter 2

Background

In this chapter, we explain some key concepts and preliminaries that are required

to better understand the studies presented in this thesis.

2.1 Kalman Filter

In this section, we briefly present the process of Kalman Filtering which is adapted

from [1, 64]. The Kalman filter is one of the most ubiquitous filter in statistical noise

filtering for long-term measurement based estimation of a set of unknown variables.

The diverse range of application domains for the Kalman Filtering includes but not

limited to robotics, wireless sensor networks, signal processing, and control. The

core of the Kalman Filtering lies in two recursive steps: Prediction and Estimation.

Kalman filter keeps track of the estimations of the system state and the noise over

time and uses them to predict/estimate the next state. Briefly speaking, Kalman

filter first predicts the state at time n as Ŝn|n−1 by using the last state estimate
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Figure 2.1: Illustration of the Kalman Filtering (This figure is adapted from [1])

Ŝn−1|n−1 and the system model. Similarly, it predicts the uncertainty or noise state

at time n, Pn|n−1, from the respective estimations at time n−1, Pn−1|n−1. Next, the

Kalman filter applies the observation/measurement at time n, On, to update the

state and uncertainty estimates for time n, Ŝn|n and Pn|n respectively. This process,

illustrated in Fig. 2.1, is repeated throughout the duration of the experiments.

2.2 Linear Quadratic Gaussian Control

A Linear Quadratic Gaussian (LQG) controller is a combination of a Kalman Filter

and a Linear Quadratic Regulator (LQR) that is proven to be the optimal controller

for linear systems with Additive White Gaussian Noise (AWGN) and incomplete
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state information [65]. The linear system equations for any discrete LQG problem

can be written as:

Sn+1 = AnSn +BnUn + zn

On = CnSn + wn

(2.1)

where Sn is the state vector, An and Bn are the state transition matrices, Un is

the LQG control vector, zn is the system noise with covariance Zn, On is the LQG

system’s observation vector, Cn is the state-to-observation transformation matrix,

and wn is the observation noise with covariance Wn at time n. An LQG controller

first predicts the next state based on the current state and the signals generated by

the LQR. Next, it applies the system observations using Kalman filtering to update

the estimates further and generates the control signals based on the updated state

estimates. For a finite time horizon LQG problem [66] with N being the horizon,

the cost function can be written as:

J = E

(
STNFSN +

N−1∑
n=0

STn QnSn + UT
nHnUn

)
(2.2)

where F ≥ 0,Qn ≥ 0,Hn > 0 are the weighting matrices.

The discrete time LQG controller for this optimization problem is:

Ŝn+1 = AnŜn +BnUn +Kn+1(On+1 − Cn+1{AnŜn +BnUn})

Un = −LnŜn and Ŝ0 = E[S0]

(2.3)
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where ˆ denotes estimates, Kn is the Kalman gain which can be solved via the

algebraic Riccati equation [67], and Ln is the feedback gain matrix. The Kalman

gain can be calculated as:

Kn = PnC
T
n (CnPnC

T
n +Wn)−1

Pn+1 = An

(
Pn − PnCT

n

(
CnPnC

T
n +Wn

)−1
CnPn

)
ATn + Zn

P0 = E
(
S0 − Ŝ0

)(
S0 − Ŝ0

)T
(2.4)

The feedback gain matrix equals

Ln = (BT
nRn+1Bn +Hn)−1BT

nRn+1An

Rn = ATn

(
Rn+1 −Rn+1Bn

(
BT
nRn+1Bn +Rn

)−1
BT
nRn+1

)
An +Qn

RN = F.

(2.5)

2.3 Backpressure Routing

The general idea behind dynamic queue-aware routing algorithms such as the Back-

pressure (BP) [68] algorithm and the Heat Diffusion (HD) algorithm [2] is that

they do not require any explicit path computation. Instead, the next-hop for each

packet depends on queue-differential weights that are functions of the local queue

occupancy information and link state information at each node. It is a general

assumption in (theoretical) queue-aware routing algorithms such as BP that the

networks operate in slotted time. Furthermore, a wireless network is represented as

25



a graph (V , E) with vertices V and edges E . However, the adjacent links or edges

of a wireless network cannot be used simultaneously due to many constraints such

as interference. In that context, a maximal schedule is defined as a set of links

such that no two links interfere with each other and no other link can be added

to that set without causing interference. We will denote a maximal schedule as:

π = {πij|i 6= j and i, j ∈ V} ∈ {0, 1}|E|, where πij = 1 if the link ij (or link ji)

is included in the schedule. The set of all such maximal schedule is referred to as

a scheduling set, denoted as Π. Next, we briefly discuss the Backpressure routing

algorithm, first proposed by Tassiulas and Ephremides [68], and extended by Neely

et al. [69, 70]. The original BP routing algorithm [68] consists of three major steps:

BP weighing, BP scheduling, and BP forwarding. The BP algorithm uses the in-

formation about estimated channel capacities µij(n) and the queue backlogs qi(n)

to make the routing decisions at each time slot n. This follows a brief description

of the BP routing steps including the penalty optimization extension introduced by

Neely et al.

2.3.1 BP Weighing

For each link ij in the network, find the queue differential, qij(n) = qi(n) − qj(n).

Next, assign some weights to the links based on the queue differential as follows.

wij(n) = µij(n)qij(n) (2.6)
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In the original BP, only the queue stabilities are considered. To incorporate

the routing cost into the BP, the drift-plus-penalty approach [69, 70] was proposed,

which we refer to as the V-parameter BP algorithm. In this approach, a route usage

cost is added as a negative penalty in the weight calculation as follows.

wij(n) = µij(n)(qij(n)− V.θij) (2.7)

where V ∈ [0,∞) determines the importance of the link penalty and θij is the link

penalty which depends on the link utility or cost function along with some penalty

functions.

2.3.2 BP Scheduling

Find or choose a scheduling vector π ∈ Π that maximizes the sum of the weights

of the activated links. In other words, choose a scheduling vector π such that

φ(n) = arg max
π∈Π

∑
ij∈E

πijwij(n) (2.8)

In case of ties, the scheduling vector is chosen randomly from the solution set.

2.3.3 BP Forwarding

Based on the scheduling vector from the BP scheduling step, if a link is active at

time-slot n i.e., πij(n) = 1, and if the link weight wij(n) > 0, then transmit packets

27



on that link at full capacity µij(n). Null packets are sent if a node does not have

enough packets to send.

2.4 Publish Subscribe Protocol and MQTT

In this section, we briefly explain the core concepts of MQTT-SN and MQTT to

better understand ROMANO. Message Queuing Telemetry Transport (MQTT) is a

publish-subscribe based machine to machine application layer networking protocol

for the Internet of Things (IoT). The core idea is that a set of “subscriber” nodes

are connected to a set of “publisher” nodes via a “broker” and the concept of

a “topic”. Each publisher publishes its messages to the broker by tagging them

with a topic ID. The broker receives the published messages and sends them to

all the subscribers of that topic. When there are multiple subscribers to a topic,

the broker dispatches copies of a published message via sequential unicast. This is

further illustrated in Fig. 2.2.

MQTT works on top of the Transmission Control Protocol (TCP) which guar-

antees reliable message transfer. MQTT also provides its own Acknowledgments

(ACKs) for additional reliability via three different Quality of Service (QoS) modes

numbered in the order of increasing complexity: QoS 0, QoS 1, and QoS 2. The QoS

feature of MQTT handles the required message retransmissions to provide message

delivery guarantee in an unreliable lossy network with frequent packet losses. In

that regard, the QoS 0 refers to at most once message transfer guarantee, the QoS
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Figure 2.2: Illustration of Publish-Subscribe Communication: A set of publisher
nodes publishes their data to a broker by associating the data with a topic. The
broker relays the data to all the subscribers of that topic

1 refers to at least once message transfer guarantee, and the QoS 2 refers to exactly

once message transfer guarantee.

MQTT for Sensor Nodes (MQTT-SN) is a variant of MQTT that is focused

on resource-constrained devices such as battery powered sensors. MQTT- SN uses

the User Datagram Protocol (UDP) rather than TCP and has smaller message

headers to reduce the overall communication overhead. However, MQTT-SN still

maintains reliability through the QoS levels used in MQTT. The typical format of

an MQTT-SN Publish message is as follows.1

Table 2.1: MQTT-SN Publish Message Format

length Msg Type Flags Topic id MsgId Data
(octet 0) (1) (2) (3-4) (5-6) (7:n)

1For a more detailed description of MQTT-SN, interested readers are referred to http://mqtt.

org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf.
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The fields Length, Msg Type, Flags, and Msd Id are used by MQTT-SN for

proper message delivery whereas the “Topic id” determines the receiving endpoints

of a message and the “Data” field contains the actual message.
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Chapter 3

Related Works

Till last decade, there was no significant focus on the RWN related research topics,

mostly due to lack of proper technologies and hardware. Thus, most of the existing

works on RWN topics are very recent. However, there exist a range of works related

to collaborative robotics and wireless sensor networks that are very much relevant

to our studies. In this section, we present a summary of the existing works related

to each of the studies.

3.1 Relative Localization and Tracking

In this section, we present the existing works related to our proposed ARREST

system for RSSI based relative localization and positioning. This set of related

works can be subdivided into three major classes: Tracking related works, Relative

Localization related works, and LQG based control related works.
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3.1.1 Tracking

Localization and Tracking of moving targets have been a very active field of research

in the robotics research domain. Over last two decades, researchers have proposed

a range of interesting techniques for tracking different moving objects such as hu-

mans, robots, and animals. To this extent, the most common architectures are

based on Vision and Laser Range Finder systems. Researchers have proposed a

class of efficient sampling and filtering algorithms for vision-based tracking such as

the Kalman filtering and the particle filtering [56, 71]. Among the pioneer works,

the work of Papanikolopoulos, Khosla, and Kanade [55] in combining vision algo-

rithms with different controller schemes, ranging from a PID to complicated LQG

controller, is mentionable. Among recent works, Jung and Sukhatme [56] proposed

an adaptive particle filter based approach for tracking a moving object in the im-

age space with a single camera based robot while omnidirectional camera-based

tracking system is proposed in [72]. In [73], a Laser Range Finder based track-

ing of multiple moving objects that relies on a sequence of temporal snapshots is

proposed for an autonomous wheelchair guidance system. There also exist some

works that combine vision with rangefinder such as the work of Lindström and

Eklundh [57], and Kleinehagenbrock et al. [74]. However, any camera/vision based

approach has many limitations such as the visibility requirement, limited field of

vision of traditional cameras, larger form-factor of the robots, and costly image

processing software requirements. On the other hand, while the laser range based
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methods do not suffer from the visibility problem, they are limited to direct line

of sight between the target and the tracker and require complicated processing. In

contrast, our proposed ARREST architecture employs RF signals for localization

and tracking, which can be developed with low-cost, small form-factor hardware,

and can be applied in scenarios with limited visibility and non-line-of-sight such as

inside cluttered indoor environments, rubbles, forests, and undergrounds.

3.1.2 Relative Localization

Another class of related works lies within the large body of works in the field of RF

Localization in wireless sensor network [58] where robots are employed for localizing

static nodes. The work of Graefenstein et al. [75] that employs a rotating antenna

on a mobile robot to map the RSSI of a region and exploit the map to localize the

static nodes, is mentionable in this context. Similar works have been proposed in

the context of tracking fish or wild animals [76, 77], where the target is assumed to

be a static radio-tagged fish/animal. The main problem addressed in these works

are proper path planning and sensing location selection for sufficient data collection.

On a related topic, hardware for the localization and tracking of a moving target

(fish) are proposed in [78] where the navigation of the tracker robots rely on a

combination of GPS and Compass. Similar work for wildlife tracking using aerial

robots is shown in [79]. Related to RF-based relative positioning works, Zickler and

Veloso [80] proposed a data-driven approach that relies completely on the Robot’s
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received RSSI for localization and tethering purpose. In their discrete grid based

Bayesian probabilistic approach, the target communicates its odometer reading with

the tracker while the tracker moves to multiple positions relative to the target and

collects multiple RSSI measurements. Oliveira et al. [81] proposed an RSSI based,

anchor-less, relative localization system for a group of mobile robots, which relies

on pairwise RSSI measurements between the robots, and applies Kalman filter and

the Floyd–Warshall algorithm for relative localization. Some researchers have also

employed infrared [82] and ultrasound devices [83] for relative localization. Vasisht,

Kumar, and Katabi [84] have applied a MIMO-based system to relatively localize a

single node. Simulation of an RSSI based constant distance following technique is

demonstrated in [85] where the leader movement path is predetermined and known

to the Follower. However, unlike these works, the TrackBot in the ARREST system

relies solely on RSSI data not only for the localization of the mobile Leader with

unknown movement pattern but also for autonomous motion control with the goal

of maintaining a bounded distance. The closest state-of-the-art related to our work

is presented in [86]. In this work, the authors developed a system that follows

the bearing of a directional antenna for effective communication. However, to our

knowledge, the maintenance of guaranteed close proximity to the Leader was not

discussed in [86], which is the most important goal in our work. Moreover, this

work employs both RSSI and sonar to determine the orientation of the transmitter
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antenna along with comparatively costly and high power consuming processing

hardware with the larger form factor.

3.1.3 LQG Based Control

On LQG related works, Bertsekas [66] has demonstrated that an LQG controller

can provide the optimal control of a robot along a known/pre-calculated path when

the uncertainty in the motion, as well as the observation noise, are Gaussian. Ex-

tending this concept, Van Den Berg, Abbeel, and Goldberg [87] proposed an LQG

based robotic path planning solution to deal with uncertainties and imperfect state

observations. In [88], Van den Berg et al. proposed yet another LQG based control

system for obstacle avoidance in robotic motions. There exist many other LQG

based robotic path planning and control systems [89, 90]. To the best of our knowl-

edge, we are the first to combine the RSSI based relative position, angle, and speed

estimation with LQG control for localization and tracking of a moving RF-emitting

Object.

3.2 Interference Power Bound for CSMA Based

Wireless Network

In our venture for a generic model (during the second study) to estimate the num-

ber of robots to deploy (by estimating the maximum allowed inter-node distance
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to maintain the target SINR), we explored the existing literature in search for a

proper model of interference and Signal to Interference plus Noise Ratio (SINR)

range analysis in a CSMA/CA based wireless network. There exist a large body

of works that characterize the mean interference power distribution in CSMA net-

works ([91, 92]) by employing the concepts of point process such as Poisson point

process, Mat’ern hard-core process, and simple sequential inhibition [93]. The basic

idea of this class of work is to represent the locations of the interferers as spatial

point processes, more specifically, hard-core point processes where the nodes fulfill

a criterion of being a certain distance apart to take into account CSMA among

themselves. Through the application of different point process properties such as

thinning and superpositions, researchers [91, 94, 92, 95] have estimated the proba-

bility distributions of the mean interference powers in the presence of CSMA/CA.

Interested readers are referred to [96] for a detailed survey on this class of works.

Among the other class of works, the work of Hekmat and Van Mieghem [97] is

the most relevant to us. They demonstrated that the interference power in the

presence of CSMA is actually upper bounded and can be best estimated by use

of hexagonal lattice structure. However, this work as well as most of the other

works include some assumptions such as the receiver being located at the center

of a contention region, which is only acceptable if the devices follow the 802.11

RTS/CTS standards [98]. Interestingly, in practice, very few commercially avail-

able products actually employ the RTS/CTS mechanism. Furthermore, the Internet
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of Things (IoT) and Wireless Sensor Network (WSN) standard 802.15.4, which is

also a standard choice for robotic network platforms, does not use RTS/CTS mech-

anism, in order to avoid inefficiencies. Thus, it is actually the transmitter that

employs the CSMA and should be located at the center of the contention region,

whereas, the receiver is free to be anywhere inside the transmitter’s communication

range. In such cases, the SINR and the interference mean values as well as the

bounds for a link are, in fact, functions of the separation distance (d) between the

endpoints of the link. In our second study, unlike the existing works, we character-

ize the SINR or the interference as a function of the separation distance (d) and

apply the modified bounds to estimate the number of robots to be deployed to satisfy

the communication performance goals.

3.3 Data Collection Routing Protocols

In this section, we present a brief survey of the existing literature that is directly

related to the proposed HDCP routing protocol for RWN in our third study. In the

existing network theory literature, there exists a range of throughput optimal poli-

cies [99, 100, 101] alongside the well-known Backpressure routing [69] algorithm.

The HD algorithm also provides the same throughput optimality guarantee in the-

ory. However, what motivated us to implement HD were the striking additional

expected performance capabilities (based on the theoretical results)— that it also

offers a Pareto-optimal trade-off between routing cost and queue congestion.
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There have also been several reductions of Backpressure routing to practice

in the form of distributed protocols, pragmatically implemented and empirically

evaluated for different types of wireless networks [102, 103, 104]. Most relevant

to the present work is the Backpressure Collection Protocol (BCP) developed by

Moeller et al. [102], the first-ever implementation of dynamic queue-aware routing

in wireless sensor networks. Our third study is informed by the BCP approach in

implementing the Backpressure routing in a distributed manner. We also directly

compare the performance of the new HDCP protocol with BCP.

Besides BCP, there are a number of other prior works on routing and collec-

tion protocols for wireless sensor networks, including the Collection Tree Protocol

(CTP) [105], Glossy [106], Dozer [107] and Low-power Wireless Bus [108]. We

provide a side by side comparison of HDCP with the well-known CTP and BCP

protocols. We believe this provides a meaningful comparison with a state of the art

minimum cost quasi-static routing protocol as well as a state of the art queue and

cost-aware dynamic routing protocol.

In recent years there has been a significant focus on developing networking

protocols that are IP-friendly, such as RPL [109]. While this study does not focus

on providing an IP-compliant version of HD, there is prior work on extending BCP

to handle IP packets [110] and we believe that a similar approach could be adopted

to enable IP operation for HDCP.
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In the prior works, Banirazi et al. have presented the idealized Heat Diffusion

routing algorithm [2, 111]. All of these are network theory papers that spell out

a centralized algorithm, assume global synchronization, assume that at each time

step an NP-hard Maximum Weight Independent Set problem can be solved and

that all queues are of an unlimited size, and under these assumptions prove various

properties of the HD algorithm. The only evaluations presented in these works are

idealized MATLAB simulations. Our third study is clearly inspired by and built

upon the earlier works on HD routing, but is the first to develop and implement it

as a realistic distributed protocol (HDCP) and evaluate it on a real testbed.

3.4 Pub-Sub Based Robotic Communication and

Control

In our fourth study, we propose an overlay communication protocol as an applica-

tion layer protocol for an RWN that uses the well-known MQTT-SN as the protocol

underneath. The widespread alternatives to MQTT-SN are MQTT, Constrained

Application Protocol (CoAP) [112], and XML-RPC (ROS). Amaran et al. [113] pre-

sented a comparison of these protocols, showing that MQTT-SN and CoAP have

similar performance and advantages over MQTT and XML-RPC (ROS). Addition-

ally, they showed that MQTT-SN messages are slightly more efficient than CoAP,
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which motivates our choice of MQTT-SN. Recently, a middleware named Data Dis-

tribution Service (DDS) is gaining popularity in the space of Industrial IoT due to

its delay and throughput guarantees [114]. However, the delay and throughput

guarantees are materialized at a cost of increased bandwidth consumption and con-

trol traffic overhead [115]. On contrary, MQTT-SN has significantly less bandwidth

consumption and control overhead which we believe to be a key communication re-

quirement in dense robotic swarms. Nonetheless, since ROMANO is an overlay

protocol, it can be easily ported to DDS. Another mentionable protocol for high

bandwidth and low latency systems is the Lightweight Communication and Mar-

shalling (LCM) protocol [116] with the key difference with MQTT-SN being the

“high bandwidth” requirement. Thus, we opt for the MQTT-SN protocol instead.

While MQTT-SN has been proposed and used in the context of sensing in

static IoT sensor deployments, MQTT-SN has not yet been used for a network of

robots. Many researchers have envisioned/proposed utilizing MQTT in the context

of robotic control. Aroon [117] demonstrated the feasibility of remotely controlling a

single robot over a cloud platform via MQTT. Kazala et al. [118] have also presented

a proof of concept implementation of using the basic functionality of MQTT for

data exchange among multiple robots. However, to the best of our knowledge,

there are no publications presenting a low power MQTT-SN based overlay protocol

that allows nodes to easily facilitate communication endpoints (one-to-one, one-to-

many, many-to-one, many-to-many) among a robot swarm. SENORA, proposed
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in [119], includes an inter-robot communication protocol which takes into account

robot location for medium access and peer-to-peer communication, but the authors

do not detail how generic communication would be facilitated among robots (e.g.

one-to-one or one-to-many) which our protocol addresses. The authors of [120]

proposed a messaging architecture for inter-robot communication with the target

application specifically for integration into a surveillance system. In contrast, our

work targets generic multi-robot systems along with various application-specific

real implementation details. Sauer et al. [121] presented the concept of an overlay

protocol built on top of the CoAP but do not present any implementation details or

performance evaluation. The lack of details makes it impossible for us to replicate

and compare with the existing work. On the other hand, ROS messages are widely

used to connect robot swarms. For example, Yan et al. [122] presented a prototype

system built on ROS messages for robot communication and described the ease

of scaling their system, although they do not include any performance evaluation.

However, while ROS messages are powerful, their packet header overhead and the

computation requirement to run ROS do not make it ideal or bandwidth-efficient for

low capacity robots consisting of only microcontrollers using IEEE 802.15.4 radios.

Nonetheless, it should be still possible to tunnel ROMANO messages through ROS,

if so desired by an application developer.
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3.5 RF Mapping

RF signal based localization and mapping have been extensively studied in the ex-

isting literature. In this context, the work of Mostofi et al. [8, 123] on the mapping

of an environment using two moving RF transceivers robots is relevant. In their

works, the robots follow a predetermined set of paths for collecting a set of RF

samples which are later processed using the concept of compressible sampling to

map obstacles. They exploit the attenuation introduced by different obstacles to

map them. Our goal is slightly different as we are interested in passively localizing

the objects/surfaces by extracting multipath components from the received signal at

a single receiver while the transmitter and receiver remain in the line of sight with

respect to each other. This also separates our work from the standard RF Sensor

Network based passive localization works [124] where a fixed network of RF devices

monitor changes in the RF communication channel properties in order to passively

localize an object. There also exist some passive localization works that employ

UWB radios and MIMO systems to localize objects. Aditya and Molisch [125] pre-

sented one such solution where a set of transmitters and receivers use the blocking

characteristics of pairwise communication links to passively localize objects. Gul-

mezoglu, Guldogan, and Gezici have proposed a similar UWB radio based solution

in [126]. There also exist some works that use RFID [127] and multiple receiving

antennas for localization. The work of Tan, Chetty, and Jamieson [128] on us-

ing 8-element uniform circular phased arrays for through-wall passive sensing and
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mapping is also relevant. The proposed system, called TrueMapper, was built on

top of costly, power consuming USRP radios. Fadel et al. [129, 130] have worked

on a custom solution called RF-capture that employs a directional antenna array

to sense human motion. They capture the reflections of a human body with each

antenna transceiver in the array, which are later processed jointly to generate an

image. Chetty, Smith, and Woodbridge [131] also presented a wifi based multi-

static radar system for through-the-wall passive sensing. There also exist some

systems [132, 45] that use phase information of the RF signal along with RSSI to

implement synthetic aperture radar (SAR) based imaging and localization. How-

ever, most of the cheap, commercially available RF modules do not provide access

to the phase information. What separates our work is the application of a single

RF transmitter-receiver antenna pair instead of multiple antennas or antenna ar-

rays to achieve passive localization of reflecting objects with acceptable performance

that can be implemented with low-cost off-the-shelf hardware.
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Chapter 4

RSSI Based Relative Position Control for RWN

In this study, we focus on a class of relative localization and tracking problems

in RWN where the term “tracking” refers to the relative positioning and con-

trol of a robot that is required to stay in the bounded proximity of an uncon-

trolled/controlled moving target, which can be a leader robot or a human.1 We

present Autonomous Rssi based RElative poSitioning and Tracking (ARREST), a

new robotic mobile sensing system for tracking and following a moving RF-emitting

object, which we refer to as a Leader, solely based on signal strength information.

This kind of system can expand the horizon of autonomous mobile tracking, dis-

tributed robotics, and robotic routers into many scenarios with limited visibility

such as night time or adverse weather operations, forests that are dense or on fire,

cluttered environments, and underground settings [4, 11, 3, 12, 136]. Our proposed

tracking agent, which we refer to as the TrackBot, uses a single rotating, off-the-

shelf, directional antenna, novel angle, and relative speed estimation algorithms,

1The material in this chapter is based in part on the works in [133, 134, 135].
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and Kalman filtering to continually estimate the relative position of the Leader

with decimeter level accuracy (which is comparable to a state-of-the-art multiple

access point based RF-localization system) and the relative speed of the Leader

with accuracy on the order of 1 m/s. The TrackBot feeds the relative position and

speed estimates into a Linear Quadratic Gaussian (LQG) controller to generate a

set of control outputs to control the orientation and the movement of the TrackBot

with the objective of staying withing a threshold distance, Dth of the leader. We

perform an extensive set of real-world experiments with a full-fledged prototype to

demonstrate that the TrackBot is able to stay within 5m of the Leader with: (1)

more than 99% probability in line of sight scenarios, and (2) more than 70% prob-

ability in no line of sight scenarios, when it moves 1.8X faster than the Leader. For

ground truth estimation in real-world experiments, we also developed an integrated

Time Difference of Arrival (TDoA) based distance and angle estimation system with

centimeter-level relative localization accuracy in the line of sight scenarios.

4.1 Problem Formulation

In this section, we present the details of our tracking problem and our mathematical

formulation based on both a 2D global frame of reference, RG, and the TrackBot’s

2D local frame of reference at time t, RF (t). Let the location of the Leader at

time t be represented as XL(t) = (xL(t), yL(t)) in RG. The Leader follows an

unknown path, PL. Similarly, let the position of the TrackBot at any time instant
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Figure 4.1: The TrackBot Prototype. This prototype system is built using commer-
cial off-the-shelf products. The black lines illustrate the wire connections between
different hardware components.

t be denoted by XF (t) = (xF (t), yF (t)). The maximum speeds of the Leader and

the TrackBot are vmaxL and vmaxF , respectively. For simplicity, we discretize the time

with steps of δt > 0 and use the notation n to refer to the nth time step i.e., t = n·δt.

Let d[n] = ||XL[n]−XF [n]||2 be the distance between the TrackBot and the Leader

at time-slot n, where ||.||2 denotes the L2 norm. Then, with Dth denoting the max

distance allowed between the Leader (L) and the TrackBot (F), the objective of

tracking is to plan the TrackBot’s path, PF , such that P (d[n] ≤ Dth) ≈ 1 ∀n

where P(.) denotes the probability.

However, realistic deployment scenarios typically do not have a global frame

of reference. Thus, we formulate a local frame of reference, RF [n], with the origin

representing the location of the TrackBot, XF [n]. Let the robot’s forward and back-

ward movements at any time instant n be aligned with the X-axis of RF [n]. Also,

let the direction perpendicular to the robot’s forward and backward movements be
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Figure 4.2: Global and Local Coordinate System Illustration

aligned with the Y-axis of RF [n]. This local frame of reference is illustrated in

Fig. 4.2. Note that in our real system all measurements by the TrackBot are in

RF [n]. In order to convert the position of the Leader in RF [n] from RG or vice

versa for simulations and emulations, we need to apply coordinate transformations.

Let the relative angular orientation of RF [n] with respect to RG be θrot[n] and the

position of the Leader in RF [n] be Xrel
L [n] = (xrelL [n], yrelL [n]). Then:


xL[n]

yL[n]

1

 =


cos(θrot[n]) − sin(θrot[n]) xF [n]

sin(θrot[n]) cos(θrot[n]) yF [n]

0 0 1




xrelL [n]

yrelL [n]

1

 (4.1)

and θrel[n] = arctan(yrelL [n]/xrelL [n]) is the Leader’s direction in RF [n]. To restate

the objective of tracking in terms of the local coordinates, P (d[n] ≤ Dth) ≈ 1 ∀t

where d[n] = ||Xrel
L [n]||2 = (xrelL [n]

2
+ yrelL [n]

2
)1/2.
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4.2 The ARREST System

In this section, we discuss our proposed system solution for RSSI based relative

position sensing and tracking. In the ARREST system, the Leader is a robot or a

human carrying a device that periodically transmits RF beacons, and the TrackBot

is a robot carrying a directional, off-the-shelf RF receiver. As shown in Fig. 4.3, the

ARREST architecture consists of three layers: Communication ANd Estimation

(CANE), Control And STate update (CAST), and Physical RobotIc ControllEr

(PRICE). In order to track the Leader, the TrackBot needs sufficiently accurate

estimations of both the Leader’s relative position (Xrel
L ) and relative speed (vrel).

Thus, at any time instant n, we define the state of the TrackBot as a 3-tuple:

S[n] =

[
de[n], verel[n], θerel[n]

]T
where the superscript e refers to the estimated

values, de[n] = ||Xrel
L [n]||2 refers to the estimated distance at time n, verel[n] refers

to the relative speed of the TrackBot along the X-axis of RF [n] with respect to the

Leader, and θerel[n] refers to the angular orientation (in radians) of the Leader in

RF [n].

CANE: The function of the CANE layer is to measure RSSI values from the

beacons and approximate the Leader’s position relative to the TrackBot, (i.e., de[n]

and θerel[n]). The CANE layer is broken down into three modules: Wireless Com-

munication and Sensing, Rotating Platform Assembly, and Relative Position Esti-

mation. At the beginning of each time slot, n, the Wireless Communication and

Sensing module and the Rotating Platform Assembly perform a 360◦ RSSI sweep
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by physically rotating the directional antenna while storing RSSI measurements of

successful beacon receptions into the vector rv[n]. The Relative Position Estimation

module uses rv[n] to approximate the relative position of the Leader by leveraging

pre-estimated directional gains of the antenna, detailed in Section 4.3.

Figure 4.3: The ARREST Architecture

CAST: The functions of the CAST layer is to maintain the 3-tuple state esti-

mates and to generate control commands based on current and past observations to

send to the PRICE layer. The CAST layer consists of two main modules: the Lin-

ear Quadratic Gaussian (LQG) Controller and the Strategic Speed Controller. The

CAST layer also includes a special, case-specific module called Multipath Angle Cor-

rection for severely cluttered environments (explained further in Section 4.5.3.4).
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The Strategic Speed Controller estimates the relative speed of the Leader by ex-

ploiting past and current state information and generates the speed control signal

in conjunction with the LQG controller. The term “Strategic” is used to emphasize

that we propose two different strategies, Optimistic and Pragmatic, for the relative

speed approximation as well as speed control of the TrackBot (detailed in Sec-

tion 4.3.3). The LQG controller, detailed in Section 4.2.1, incorporates past state

information, past control information, and relative position and speed approxima-

tions to (1) generate the system’s instantaneous state, (2) determine how much to

rotate the TrackBot itself, and (3) determine what should be the TrackBot’s rela-

tive speed. The state information generated by the LQG controller is directly sent

to the Strategic Speed Controller to calculate the absolute speed of the TrackBot.

PRICE: The goal of the PRICE layer is to convert the control signals from the

CAST layer into actual translational and rotational motions of the TrackBot. It

consists of two modules: Movement Translator and Robot Chassis. The Movement

Translator maps the control signals from the CAST layer to a series of platform-

specific Robot Chassis motor control signals (detailed in Section 4.4).

4.2.1 Proposed LQG Formulation

In our proposed solution, we first formulate the movement control problem of the

TrackBot as a discrete time Linear Quadratic Gaussian (LQG) control problem.

An LQG controller is a combination of a Kalman Filter with a Linear Quadratic
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Figure 4.4: Proposed LQG Controller System

Regulator (LQR) that is proven to be the optimal controller for linear systems with

Additive White Gaussian Noise (AWGN) and incomplete state information [65].

The linear system equations for any discrete LQG problem can be written as:

S[n+ 1] = AnS[n] +BnU[n] + Z[n]

O[n] = CnS[n] + W[n]

(4.2)

where An and Bn are the state transition matrices, U[n] is the LQG control vector,

Z[n] is the system noise, O[n] is the LQG system’s observation vector, Cn is the

state-to-observation transformation matrix, and W[n] is the observation noise at

time n. A LQG controller first predicts the next state based on the current state

and the signals generated by the LQR. Next, it applies the system observations to

update the estimates further and generates the control signals based on the updated

state estimates. In our case, O[n] =

[
dm[n], vmrel[n], θmrel[n]

]T
(the superscript

m refers to measured values). Moreover, in our case, the state transition matices
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An = A, Bn = B, Cn = C are time invariant and the time horizon is infinite as we

do not have any control over the Leader’s movements. For a infinite time horizon

LQG problem [66], the cost function can be written as:

J = lim
N→∞

1

N
E

(
N∑
n=0

S[n]TQS[n] + U[n]THU[n]

)
(4.3)

where Q ≥ 0,H > 0 are the weighting matrices. The discrete time LQG controller

for this optimization problem is:

Ŝ[n+ 1] = AŜ[n] +BU[n] +K(O[n+ 1]− C{AŜ[n] +BU[n]})

U[n] = −LŜ[n] and Ŝ(0) = E(S(0))

(4.4)

whereˆdenotes estimates, K is the Kalman gain which can be solved via the alge-

braic Riccati equation [67], and L is the feedback gain matrix. In our system, the

state transition matrix values are as follows:

A =


1 −δt 0

0 1 0

0 0 1

B =


0 −δt 0

0 1 0

0 0 −1

C =


1 0 0

0 1 0

0 0 1

 (4.5)

where δt is the time granularity for the state update. Ideally, within δt, the TrackBot

executes one set of movement control decisions while it also scans RSSI for the next

set of control decision (detailed in Sections 4.5.1 and 4.5.2). Note that, to solve
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this optimization problem, we also require the covariance data for the noise, i.e.,

ΣWW = E(WWT ), and ΣZZ = E(ZZT ). We assume the system noise, Z[n], to be

Gaussian and the measurement noise, W [n], to be approximated as Gaussian.

Furthermore, we tweak the LQG controller to send out a rotational control

signal after a state update and before generating the LQR control signals, U[n].

The rotational control signal rotates the TrackBot assembly by θerel[n] and sets

θerel[n] = 0. This is performed to align the robot toward the estimated direction of

the Leader before calculating the movement speed. Thus, we use only the Kalman

Filtering part of the LQG controller for angle/orientation control. The reason

behind not using the full LQG controller for TrackBot’s orientation control lies

in the fact that the LQG controller considers a sudden rapid change in direction

(≈ 180◦) as a noise and takes a while to correct the course of the TrackBot. A

block diagram of our LQG control system model is presented in Fig. 4.4.

4.3 RSSI Based Relative Position and Speed

Observations

In this section, we discuss our methodologies to map the observed RSSI vector,

rv[n], into the controller observation vector, O[n].
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4.3.1 Distance Observations

The RSSI is well known to be a measure of distance if provided with sufficient

transceiver statistics such as the transmitter power, the channel path loss exponent,

and the fading characteristics. One of the standard equations for calculating the

received power for an omnidirectional antenna is as follows [18]:

Pr,dBm = Pt,dBm +GdB − Lref − 10η log10

dm[n]

dref
+ ψ

P ref
r,dBm = Pt,dBm +GdB − Lref + ψ

=⇒ dm[n]

dref
≈ 10

(Prefr,dBm
−Pr,dBm)

10·η

(4.6)

where Pr,dBm is the received power in dBm, Pt,dBm is the transmitter power in

dBm, GdB is the gain in dB, Lref is the path loss at the reference distance dref in

dB, η is the path loss exponent, dm[n] is the distance between the transmitter and

receiver, ψ is the random shadowing and multipath fading noise in dB, and P ref
r,dBm

is the received power at reference distance, dref . Eqn. (4.6) is also valid for the

average received power for a directional antenna with an average gain of GdB. To

calculate the received power for a particular direction θ, we just need to replace

GdB in (4.6) with the directional gain of the antenna, GdB(θ). To apply (4.6) in

ARREST, the TrackBot needs to learn the channel parameters such as the η, Lref ,

and dref . In our proposed system, we assume that the TrackBot has information

about the initial distance to the Leader, dm(0). Furthermore, GdB(θ) and Pt,dBm

are known as a part of the system design process. Upon initialization of ARREST,
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the TrackBot performs an RSSI scan by rotating the antenna assembly to generate

rv(0) and harnesses the average received power (Pr,dBm) information to estimate

the environment’s η as follows.

η =
P ref
r,dBm − Pr,dBm
10 log10

dm(0)
dref

(4.7)

Next, the TrackBot applies the estimated η and Pr,dBm = avg {rv[n]} on (4.6) to

map rv[n] to the observed distance to the Leader, dm[n].

4.3.2 Angle Observations

One of the main components of our ARREST architecture is the observation of the

Angle of Arrival (AoA) of RF beacons solely based on the RSSI data, rv[n]. There

exist three different classes of RF-based solutions to determine the AoA. The first

class, antenna array based approaches, employs an array of antennas to determine

the AoA by leveraging the phase differences among the signals received by the

different antennas [137]. The main difficulty of implementing this class is that

very few multi-antenna off-the-shelf radios provide access to the phase information.

The second class, multiple directional antenna based approaches, employs at least

two directional antennas oriented in different directions [138] to determine AoA.

In this class, the differences among RSSI values from all antennas are utilized

to determine the AoA. However, utilizing current off-the-shelf antenna arrays or

multiple directional antennas increases the cost, form factor, and complexity of a
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TrackBot implementation. We avoid the multiple directional antenna based option

also because it requires separate radio drivers for each antenna as well as proper

time synchronizations. Thus, we develop methods contributing to the third class

of solutions, which is the use of a single, rotating antenna and the knowledge of

the antenna’s directional gain pattern to approximate the AoA of RF beacons.

The core of these methods, called pattern correlation, is to correlate the vector of

RSSI measurements, rv[n], with another vector representing the antenna’s known,

normalized gain pattern, gabs. At the beginning of each time slot n, the TrackBot

performs a 360◦ sweep of RSSI measurements to generate the vector, rv[n]. Then,

rv[n] is normalized: gm = rv[n]−max(rv[n]). The TrackBot also generates different

θ shifted versions of gabs(θ) as follows.

rv[n] = [r−180, r−178.2, · · · , r−1.8, r0, r1.8, · · · r178.2]

gm = [r′−180, r
′
−178.2, · · · , r′−1.8, r

′
0, r
′
1.8, · · · r′178.2]

gabs(θ) = [g(−180+θ), · · · , g(0+θ), · · · , g(178.2+θ)]

(4.8)

where rφ refers to the RSSI measurement, gφ refers to the antenna gain, and

r′φ = rφ − max{rv} refers to the observed gain for the antenna orientation of φ◦

with respect to the X-axis of RF [n]. The step size of 1.8◦ is chosen based on our

hardware implementation’s constraints. Thus, the possible antenna orientations

(φ) are limited to Θ = {−180, · · · ,−1.8, 0, · · · , 178.2}. Next, the TrackBot em-

ploys different pattern correlation methods for the AoA observation. Below, we
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describe three methods in increasing order of complexity. The first method was

originally demonstrated by [75]. Through real-world experimentation, we develop

two additional improved methods.

4.3.2.1 Basic Correlation Method

The first method (originally demonstrated by [75]) of determining AoA correlates

gm with gabs(θ) ∀θ ∈ Θ and calculates the respective L2 distances. The observed

AoA is the θ at which the L2 distance is the smallest:

θmrel = arg min
θ∈Θ

∑
k∈Θ

ωk · ||r′k − g(k+θ)||2 · Ir′k (4.9)

where the indicator function Ir′k indicates whether the sample r′k exists or not to

account for missing samples in real experiments, and ωk = 1 is a constant.

4.3.2.2 Clustering Method

While the first method works well if enough uniformly distributed samples (≥ 100

in our implementation) are collected within the 360◦ scan, it fails in scenarios

of sparse, non-uniform sampling due to packet loss. In real experiments (mainly

indoors), the collected RSSI samples can be uniformly sparse or sometimes batched

sparse (samples form clusters with large gaps (≈ 30◦) between them).

Definition 4.3.1. An angular cluster (Λ) is a set of valid samples for a contiguous

set of angles: Λ = {k|Ir′k = 1∀k ∈ {φf , φf + 1.8, · · · , φl} ⊂ Θ}.
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To prevent undue bias from large cardinality clusters that can cause errors in es-

timating the correlation, we assign a weight (ωk) to each sample (k) and use the

pattern correlation method as in Eqn. (4.9). In our weighting scheme, we assign

ωk = 1
|Λ| where k ∈ Λ.

4.3.2.3 Weighted Average Method

Based on real-world experiments, we find that the angle observation based on the

basic correlation method, say θ1
m, gives reasonable error performance if the average

cluster size, denoted by λa, is greater than the average gap size between clusters, µa.

Conversely, the angle observation based on the clustering method, say θ2
m, is better

if λa << µa. Thus, as a trade-off between both the basic correlation method and

the clustering method, we propose a weighted averaging method described below.

θmrel =


λa
µa
· θ1

m + (1− λa
µa

) · θ2
m if λa ≤ µa

θ1
m if λa > µa

(4.10)

In the rest of the study, we use the weighted average method for angle observations.

4.3.3 Speed Observations

To fulfill the tracking objective, the TrackBot needs to adapt its speed of movement

(vF [n]), according to the Leader’s speed (vL[n]). In our ARREST architecture, the

Strategic Speed Controller uses the relative position observations (dm[n], θmrel[n])
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from the CANE layer and the past LQG state estimates to determine the current

relative speed, vmrel[n], as well as the Leader’s speed, vmL [n]. In this context, we

employ two different observation strategies. The first strategy, which we refer to

as the Optimistic strategy, assumes that the Leader will be static for the next time

slot and determines the relative speed as follows:

vmrel[n] = verel[n]− (dm[n]− de[n] · cos θmrel[n])

δt

veL[n+ 1] = 0

(4.11)

On the other hand, the Pragmatic Strategy assumes that the Leader will continue

traveling at the observed speed, vmL [n]. This strategy determines the relative speed

as follows:

vL[n] =

(
(de[n]− dm[n] · cos θmrel[n])2 + (dm[n] · sin θmrel[n])2)1/2

δt

θv[n] = arctan
dm[n] · sin θmrel[n]

dm[n] · cos θmrel[n]− de[n]
− θmrel[n]

veL[n+ 1] = vmL [n] = vL[n] · cos(θv[n])

vmrel[n] = vF [n]− vmL [n]

(4.12)

For an illustration of different components of this process, please refer to Fig. 4.5.

Next, the LQG controller uses the observation vector O[n] to decide the next state’s

relative speed, verel[n + 1] which is used by the Speed Controller to generate the

TrackBot’s actual speed for next time step, vF [n+ 1] = veL[n+ 1] + verel[n+ 1]. Note

that the speed of the TrackBot, vF [n], is exactly known to itself at any time n. In
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addition to the different assumptions about the Leader’s speed, the two strategies

also differ in how the noise is modeled in the correlation between distance and speed

estimations: the Optimistic Strategy assumes that the noise in speed observations

are uncorrelated with the noise in distance observations, whereas the Pragmatic

strategy assumes strong correlation between distance and speed estimation noise.

We compare the performance of both strategies based on emulation and real world

experiments in Sections 4.5.1.1 and 4.5.2.1, respectively.

Figure 4.5: Illustration of Different Components for Relative Speed Observation

4.4 TrackBot Prototype

4.4.1 Hardware

We implemented a TrackBot with our ARREST architecture inside a real, low-cost

robot prototype presented in Fig. 4.1. For a concise description of our prototype,

we list the hardware used for implementation of each of the ARREST components
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in Table 4.1. We also discuss details of the Time Difference of Arrival (TDOA)

based localization system integrated with our ARREST architecture for ground

truth estimation separately in Section 4.5.3.

Table 4.1: ARREST Hardware Implementation

Module Hardware
Wireless Communica-
tion and Sensing

OpenMote[139]; Rosewill Directional Antenna (Model
RNX-AD7D)

C
A

N
E

Rotating Platform As-
sembly

Nema 17 (4-wire bipolar Stepper Motor); EasyDriver -
Stepper Motor Driver; mbed NXP LPC1768 [140]

Relative Position Esti-
mation

mbed NXP LPC1768 [140]

CAST mbed NXP LPC1768 [140]

P
R

IC
E Movement Translator mbed NXP LPC1768 [140]

Robot Chassis
Baron-4WD Mobile Platform, L298N Stepper Motor
Driver Controller Board, HC-SR04 Ultrasonic Sensor [141]

OpenMote [139]
TI 32-bit CC2538 @ 32 MHz with 512KB Flash memory, 32KB
RAM, 2.4GHz IEEE 802.15.4-based Transceiver connected via
SMA plug

mbed NXP-
LPC1768 [140]
µ-processor

32-bit ARM Cortex-M3 core @ 96MHz, 512KB FLASH, 32KB
RAM; Interfaces: built-in Ethernet, USB Host and Device, CAN,
SPI, I2C, ADC, DAC, PWM and other I/O interfaces

Rosewill RNX-
AD7D Direc-
tional Antenna

Mode 1: Frequency: 2.4GHz, Max Gain: 5dBi, HPBW: 70◦

Mode 2: Frequency: 5GHz, Max Gain: 7dBi, HPBW: 50◦

Nema 17 Step-
per Motor

Dimension: 1.65′′ × 1.65′′ × 1.57′′, Step size: 1.8 degrees (200
steps/rev), Rated current: 2A, Rated resistance: 1.1 Ohms

HC-SR04 [141]
Operating Voltage: 5V DC, Operating Current: 15mA,
Measure Angle: 15◦, Ranging Distance: 2cm - 4m

In the TrackBot prototype, the directional antenna and the OpenMote are

mounted on top of a stepper motor using a plate. While we use two micropro-

cessors (the OpenMote and the mbed), the system can be implemented using one

microprocessor. We choose to use two in this prototype to work around wiring

issues and work around the lack of sufficient GPIO pins on the OpenMote. The
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OpenMote is only used for RF sensing while the mbed is used to implement the

rest of the ARREST modules. For programming of the mbed, we use the mbed

Real-Time Operating System [142]. The mbed sends control signals to the stepper

motor to rotate it in precise steps of 1.8◦. Each consecutive 360◦ antenna rotations

alternate between clockwise and anti-clockwise because this: (1) prevents any wire

twisting between the mbed and OpenMote and (2) compensates for the stepper mo-

tor’s movement errors. The mbed communicates with other H/W components via

GPIO pins and High-level Data Link Control (HDLC) Protocol [143] based reliable

serial line communication.

In the current prototype, the maximum speed of the robot is 30cm/s. Due

to synchronization issues on the mbed when trying to simultaneously rotate the

antenna and move the robot chassis, the antenna assembly sometimes does not

return to its initial position after a complete rotation. To solve this issue while

avoiding complex solutions (e.g., via a feedback-based offset control mechanism),

the TrackBot instead first performs an RSSI scan and then moves the chassis.

Ideally, the antenna can rotate 360◦ in 1s while collecting 200 samples. However,

we choose to slow the scan down to a duration of 2s to cope with the occasional

occurrence of sparse RSSI samples. Moreover, to keep the movement simple, the

TrackBot first rotates to the desired direction and then moves straight with the

desired speed. The wheels of the robot are controlled using PWM signals from

the mbed with a period of 2s. We choose a 2s period for robot rotation as one 2s
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pulse width equates to a chassis rotation amount of ≈ 180◦. We also choose the

same period length (2s) for forward movement which caps the speed of the robot at

60/6 = 10cm/s (including 2s of RSSI scan). The whole system is powered by five

AA batteries which can run for a total of ≈ 3−4 hours. We also implemented a very

simple obstacle avoidance mechanism by employing a single HC-SR04 rangefinder

in the front bumper of the chassis and protection bumpers on the other sides. While

moving forward, if the ultrasound detects an object at a distance less than 10cm,

it stops the TrackBot’s movement immediately.

The Leader node is currently implemented as an OpenMote transmitting bea-

cons with the standard omnidirectional antenna and a transmit power of 7dBm.

For programming of the OpenMotes, we use the RIOT operating systems [144, 145].

The Leader implementation is capable of transmitting 200 packets/second.

4.4.2 ARREST System Parameter Setup

4.4.2.1 Cost Parameters Setup

In the cost function of our LQG formulation, the matrix Q is a 3×3 positive definite

diagonal matrix: Q = diag{Qd, Qv, Qθ}. Our main goal is to keep the distance as

well as the relative angle to be as low as possible while keeping emphasis on the

distance. From this perspective, we perform a set of experiments to find a good

trade-off between Qv, Qθ, and Qd where we vary one parameter while keeping the

rest of them fixed. Based on these experiments, we opt for the following settings:
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Qv = 0.1, Qθ = 1, and Qd = 10 · vmaxL where vmaxL is the maximum speed of the

Leader. With these settings, our system performs better than any other explored

settings. Furthermore, H is chosen to be a 3× 3 Identity matrix.

4.4.2.2 Noise Covariance Matrix Parameters Setup

In our implementation, the system noises are assumed to be i.i.d normal random

variables with ΣZZ being a 3×3 identity matrix. On the other hand, the observation

noise covariance matrix requires separate settings for the different strategies. For

the Optimistic strategy, we assume that the observation noises are uncorrelated,

whereas, for the Pragmatic strategy, the distance estimation errors and the relative

speed estimation errors are highly correlated with variances proportional to vmaxL . A

set of empirically determined values of ΣWW for the Optimistic and the Pragmatic

strategies are as follows.

ΣOp
WW =


4 0 0

0 2 0

0 0 1

 , ΣPg
WW =


1 vmaxL 0

vmaxL (vmaxF )2 0

0 0 0.1

 (4.13)

whereOp and Pg refers to the Optimistic and the Pragmatic strategies, respectively.
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4.5 Experiments and Performance Analysis

4.5.1 Baseline Analysis via Emulation

In this section, we perform a thorough evaluation and setup the different parameters

such as the LQG covariance matrix (discussed in Section 4.4.2) of the ARREST

architecture via a set of emulation experiments. We use the emulation experiment

results as a baseline for our real-world experiments.

We employ our hardware prototypes, discussed in Section 4.4, to collect sets of

RSSI data in cluttered indoor and outdoor environments for a set of representative

distances, D, and angles Θ. Next, we use the collected samples to interpolate the

RSSI samples for any random configuration C = (d, θrel), where d ∈ R+ and θrel ∈

[−180, 180), as follows: re = rs−10·η·log10(d/dnear)+N (0, σ2), where rs is a random

sample for configuration Cnear = (dnear, θnear) such that dnear = arg mindi∈D |di− d|

and θnear = arg minθi∈Θ |θi − θrel|. Note that we add an extra noise of variance

σ2 = 2 on top of the noisy samples (with σ2 ≈ 4) for configuration Cnear. To

estimate the η, we use (4.7) to calculate ηij for each pair of distances, di, dj ∈ D

and take the average of them. We choose a value of δt = 1s in (4.5) to match the

maximum achievable speed of our stepper motor as, ideally, the interval between

any two consecutive movement control decisions could be 1s where the TrackBot

carries out any movement control decision within the respective 1s interval.
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Figure 4.6: (a)-(b)Tracking Performance Comparison Among Different Speed Esti-
mation Strategies

4.5.1.1 The Optimistic Strategy vs. The Pragmatic Strategy

In this section, we compare the performance among the two proposed strategies,

Optimistic and Pragmatic, and a Baseline algorithm. In the Baseline algorithm, the

TrackBot estimates the relative position via the basic correlation method (discussed

in 4.3.2.1). Once the direction is determined, the TrackBot rotates to align itself

toward the estimated direction and then moves with a speed of min{vmaxF , d
e[n]
δt
}. In

Fig. 4.6a, we compare the average distance between the TrackBot and the Leader

for varying vmaxL while setting vmaxF = 1.8 · vmaxL . Figure 4.6a clearly demonstrates

that the Pragmatic strategy performs better than the Optimistic strategy as well

as the Baseline algorithm, due to adaptability and accuracy of the speed informa-

tion. The poor performance of the Optimistic strategy is due to its indifference

towards the actual speed of the Leader which causes the TrackBot to lag behind

for higher velocities. Conversely, we compare the average distance between the
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Leader and the TrackBot for varying vmaxF , while the Leader’s maximum speed is

fixed at vmaxL = 1m/s. The experiment outcomes, presented in Fig. 4.6b, show that

the performance of both strategies are comparable, while the Optimistic strategy

outperforms the Pragmatic strategy for vmaxF ≥ 3 · vmaxL . The reason behind this is

the Leader is constantly changing movement direction while the TrackBot always

travels along the straight line joining the last estimated position of the Leader and

the TrackBot which may not be the same as the Leader’s direction of movement.

This results in oscillations in the movement pattern for the Pragmatic strategy

while the Optimistic strategy avoids oscillations since it assumes the Leader to be

static. The worst performance of the Baseline approach is attributed to lack of

speed adaptation by taking past observation into account.

One more noticeable fact from Fig. 4.6b is that if vmaxF = vmaxL , the tracking per-

formance is the worst. This is quite intuitive because for this speed configuration,

the TrackBot is unable to compensate for any error or initial distance while the

Leader constantly moves at a speed close to vmaxL . Thus, the relative speed needs

to be positive for proper tracking. In order to find a lower bound on the TrackBot’s

speed requirement, we perform another set of experiments by varying vmaxF from

vmaxL to 3 · vmaxL . Based on the results, we conclude that for vmaxF ≤ 1.6 · vmaxL , the

tracking system fails and the distance increases rapidly. On the other hand, for

vmaxF > 1.6 · vmaxL the performance remains the same. Thus, in our experimental

setup, we opt for vmaxF = 1.8 · vmaxL .
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4.5.1.2 Absolute Distance Statistics

One main focus of our ARREST architecture is to guarantee P (||XL[n]−XF [n]||2

≤ Dth) ≈ 1 ∀n. The value of Dth could be chosen as a function of vmaxL . However,

according to our target application context, we select Dth = 5m as we consider

a distance more than 5 meters to be large enough to lose track in an indoor en-

vironment. With this constraint, we find that our present implementation of the

ARREST system fails in the tracking/following objective if the Leader moves faster

than 3m/s. In order to verify whether our ARREST architecture can guarantee the

distance requirement for Leader with vmaxL ≤ 3m/s, we perform a set of emulations

with δt = 1s, where the Leader travels along a set of random paths. In all cases,

the instantaneous distances between the TrackBot and the Leader during the emu-

lation are less than 5m with probability ≈ 1. The nonzero probability of distances

higher than 5m is due to randomness in the Leader’s motion including a complete

reversal of movement direction.

4.5.1.3 Estimation Errors

In order to learn the statistics of different estimation errors, we perform a range

of emulation experiments, where the Leader follows a set of random paths and

vmaxL ≤ 3m/s. In Fig. 4.7a, we plot the empirical CDF of the absolute errors in the

distance estimates maintained by our system. Figure 4.7a clearly illustrates that the

instantaneous errors are less than 100cm with very high probability (≈ 90%) and

68



0 0.5 1 1.5 2

X

0

0.2

0.4

0.6

0.8

1

C
D

F
, 
F

(X
)

(a)

0 45 90 135 180

X

0

0.2

0.4

0.6

0.8

1

(b)

0 0.5 1 1.5 2 2.5 3

X

0

0.2

0.4

0.6

0.8

1

(c)

Figure 4.7: Emulation Based Performance: (a) Absolute Distance Estimation Er-
rors (in m), (b) Absolute Angle Estimation Errors (in degrees), and (c) Absolute
Speed Estimation Errors (in m/s)

that the absolute error values are bounded by 1.5m. These statistics are reasonable

for pure RSSI-based estimation systems (explained further in Section 4.5.4.1). We

also plot the CDF of the absolute angle estimation errors over the duration of the

emulations in Fig. 4.7b. It can be seen that the absolute angle errors are less than

40◦ with high (≈ 80%) probability, which is justified as the Half Power Beam Width

(HPBW) for the antenna we are using is approx 70◦. Further improvements may

be possible by using an antenna with greater directionality or other radios (such as

UWB radios). The non-zero probability of the angle error being more than 40◦ is

again due to the random direction changes in the Leader’s movements. Similarly,

we analyze the absolute speed estimation errors in terms of CDF, illustrated in

Fig. 4.7c. The absolute errors in the speed estimations of the Leader are less than

1m/s with ≈ 90% probability.
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Table 4.2: Summary of Emulation Results

� Pragmatic Strategy performs best for 1.6·vmaxL < vmaxF < 3·vmaxL while Optimistic
Strategy performs best for vmaxF ≥ 3 · vmaxL

� The ARREST system fails if vmaxL > 3m/s.
� For vmaxL ≤ 3m/s and vmaxF = 1.8 · vmaxL , the TrackBot stays within 5m of the
Leader with probability ≈ 100%.
� Absolute distance estimation errors are < 100cm with probability ≈ 90% and
< 150cm with probability ≈ 100%.
� Absolute angle estimation errors are < 40◦ with probability ≈ 80%.
� Absolute speed estimation errors are less than 1m/s with probability ≈ 90%.

4.5.2 Real Experiment Results: Small Scale

To analyze the performance of the ARREST architecture, we use the TrackBot

prototype to perform a set of small-scale experiments, followed by a range of large-

scale experiments. In this section, we present the results of our small-scale real-

world experiments.

Based on the valuable insights from the emulation results, we choose TrackBot’s

speed to be at least 1.8X the Leader’s speed. The TrackBot makes a decision every

6s. Between each decision, the TrackBot takes 2s for both the antenna rotation and

RSSI scan, 2s for the chassis rotation, and 2s for the chassis translation. However,

in the state update equations, δt = 4s because the actual chassis movement takes

place for only 4s. With this setup, we perform a set of real tracking experiments

in three different environments:

� A cluttered office space, illustrated in Fig. 4.8a (≈ 10m× 6m), with a lot of

office desks, chairs, cabinets, and reflecting surfaces.
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Figure 4.8: Full Path Traces from Small Scale Real World Experiments

� A hallway, illustrated in Fig. 4.8b (≈ 18m long and 3m wide), with pillars as

well as sharp corners.

� A VICON camera localization [146] based robot experiment facility, illus-

trated in Fig. 4.8d (≈ 6m× 6m).

For the first two environments, we use manual markings on the floor to localize

both the Leader and the TrackBot. For the last environment, the VICON facil-

ity provides us with camera-based localization at millimeter scale accuracy. We
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perform a set of experiments in each of these environments for an approximate

total period of one month with individual run lasting for 30 minutes during differ-

ent times of the day. For these experiments, the Leader is a human carrying an

OpenMote transmitter.

4.5.2.1 The Optimistic Strategy vs. The Pragmatic Strategy

Similar to our emulation based analysis, we perform a real system based compari-

son of the proposed speed adaptation strategies as well as the Baseline Algorithm

(introduced in Section 4.5.1.1). However, in this set of experiments, we do not

vary the maximum speed of the TrackBot or the Leader due to prototype hardware

limitations. Instead, we compare the absolute distance CDF statistics of these

three strategies in Fig. 4.9a for vmaxF = 10cm/s and vmaxF = 1.8 · vmaxL . Figure 4.9a

validates that Pragmatic strategy performs best among all three strategies when

vmaxF = 1.8 · vmaxL . Moreover, the baseline strategy performs the worst due to lack

of speed adaptation as well as lack of history incorporation. In summary, our real

experiment based results concur with the emulation results.

4.5.2.2 Estimation Errors

To analyze the state estimation errors in our ARREST architecture similar to

the emulations, we perform a range of prototype based experiments, where the

vmaxF = 1.8 · vmaxL and the Leader follows a set of random paths. In Fig. 4.9b, we

plot the empirical CDF of the absolute errors in the distance estimates maintained
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Figure 4.9: Real Experiment Based Performance for Small Scale: (a) Absolute
Distance in Meters, (b) Absolute Distance Estimation Error in Meters, and (c)
Absolute Angle Estimation Error in Degrees

by our TrackBot. Figure 4.9b clearly illustrates that the instantaneous absolute

errors in our distance estimates are ≤ 100cm with very high probability (≈ 90%),

and are bounded by 1.5m. These statistics are also reasonable for pure RSSI based

estimation systems and concur with the emulation results. Next, in Fig. 4.9c, we

compare the angle estimation error performance of the TrackBot for all three AoA

observation methods introduced in Section 4.3.2 where we intentionally introduce

random sparsity in the RSSI measurements. Figure 4.9c illustrates that our pro-

posed clustering method and weighted average method perform significantly better

than the basic correlation method which is expected since the first two take into

account the clustered sparsity (Detailed in Section 4.3.2). The instantaneous ab-

solute angle errors are less than 40◦ with high probability (≈ 90%) for all three
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methods which is justified because the HPBW specification for the antenna is ap-

prox 70◦. Figure 4.9c also illustrates that the weighted angle observation method

slightly outperforms the clustering method for AoA observation. The apparent sim-

ilarity between the performance of the clustering method and the weighted average

method is attributed to the consistent lower cluster sizes compared to the gap sizes

(λa << µa) in our experiments.

4.5.2.3 Tracking Performance

In Fig. 4.8a, we present a representative path trace from the experiments in the

indoor scenario. Similarly, in Fig. 4.8b we present a real experiment instance in the

Hallway. Lastly, Fig. 4.8d illustrates an example trace from the VICON system.

All three figures illustrate that our system performs quite well in the respective sce-

narios and stays within ≈ 2m from the Leader for the duration of the experiments.

These results suggest that our system works equally well in different environments:

cluttered and uncluttered. To verify that further, we perform a set of experiments

with a static Leader not in the line of sight of the TrackBot for ≥ 50% of the Track-

Bot’s path. Our TrackBot was able to find the Leader in 75% of such experiments.

In Fig. 4.8c, we present one instance of such experiment. The main reason behind

this success lies in the TrackBot’s ability to leverage a good multipath signal (if

exists). In absence of a direct line of sight, the TrackBot first follows the most

promising multipath component and by doing so it eventually comes in a line of
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sight with the Leader and follows the direct path from that point on. In most of

these experiments (≥ 90%), the TrackBot travels a total distance of less than 2X the

distance traveled by the Leader. This implies that our system is efficient in terms

of energy consumption due to robotic maneuvers.

Nonetheless, these small real-world experiments also point out that our current

system does not work if there exists no strong/good multipath signal in NLOS

situations where “strong multipath” implies that one multipath signal’s power is

significantly higher than other multipath signals. We detail multipath related prob-

lems and our method of partly circumventing it in Section 4.5.3.4.

Table 4.3: Summary of Small Scale Real-World Experiments

� Pragmatic Strategy performs best for 1.8 · vmaxL = vmaxF .
� Absolute distance estimation errors are < 100cm with probability ≈ 90% and
< 150cm with probability ≈ 100%.
� Absolute angle estimation errors are < 40◦ with probability ≈ 90%.
� Weighted average AoA observation method performs the best.
� The TrackBot stays within 2m of the Leader with probability ≈ 98% in line of
sight contexts.
� The ARREST system works with probability≈ 75% for NLOS contexts, although
it fails if no “strong multipath” exists.

4.5.3 Real Experiment Results : Large Scale

The small-scale experiments, presented in Section 4.5.2, were limited in terms of

deployment region (≤ 60 sq. meters) due to the dimensions of the VICON system
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and the effort plus time required for large-scale experiments with manual measur-

ing/markings. To perform large scale and long duration experiments based evalu-

ations, we integrated a version of a well known Time Difference of Arrival based

localization [147] ground truth system in our TrackBot. This helped us avoid the

need for tedious manual markings and measurements. For more efficient experi-

ments, we also developed a robotic leader (illustrated in Figure 4.10), which we

will refer to as the LeaderBot in this section, to act as both Leader as well as the

reference node for the TDoA localization system.

Figure 4.10: Illustration of a 3pi LeaderBot. This robot is used as the leader robot
as well as the TDoA localization anchor for large-scale experiments.

The main idea behind TDoA systems is to use a reference node that transmits

two different types of signals, say RF and Ultrasound, simultaneously. Now, the

localizing/receiver node receives these two signals at different instances of time due

to the propagation speed difference between RF and Ultrasound, say ∆c. With
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proper timestamps, the receiver can now calculate the time difference of arrival

of these two signal, say ∆t, to estimate the distance as ∆c · ∆t. We extend this

concept slightly further by placing both the receiver RF antenna and the ultrasound

on the TrackBot’s rotating platform. We rotate the platform in steps of 18◦ (just

a design choice) and perform TDoA based distance estimation for each orientation

of the assembly. The TDoA system returns a valid measurement if and only if

the assembly is oriented toward a direct line of sight or a reflected signal path.

Assuming that there exists a line of sight, the orientation with the smallest TDoA

corresponds to the actual angle between the LeaderBot and the TrackBot, and

value of the smallest TDoA corresponds to the distance.

4.5.3.1 LeaderBot and TDoA Ranging

The LeaderBot is built upon the commercially available small Pololu 3pi robot [148].

In our LeaderBot, we use two Openmotes: one Openmote acts as the Leader bea-

coner (Beacon Mote) and operates on 802.15.4 channel 26; the other Openmote

(Range Mote) is used to remotely control the 3pi robot’s movements and to perform

the TDoA based localization on 802.15.4 channel 25. We use two Openmotes for

cleaner design as well as to avoid operation interference between remote control-

ling and beaconing. We use a MB 1300 XL-MaxSonar-AE0 [149] as the ultrasound

beaconer, powered by the 3pi robot. The LeaderBot is illustrated in Fig. 4.10. On

the TrackBot, we also add a MB 1300 XL-MaxSonar-AE0 [149] ultrasound on the
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rotating platform along side with the directional antenna to receive the ultrasound

beacons. In these experiments, the Openmote on the TrackBot switches between

Tracking mode and the Ranging mode for ground truth estimation by switching

its operating threads as well as the Openmote channel. Step by step method of

ranging is as follows.

1. Before ranging, the TrackBot and the LeaderBot finish up their last movement

step and stops.

2. TrackBot switches channel from 26 (Tracking channel) to 25 (Ranging Chan-

nel).

3. TrackBot’s Openmote sends a ranging request (REQ) packet to the Leader’s

RangeMote.

4. Upon receipt of the REQ packet, the RangeMote and the LeaderBot prepares

for ranging by temporarily switching off the remote control feature and sends

a Ready (RDY) packet to the TrackBot.

5. Upon receiving RDY packet, the TrackBot’s Openmote turns ON the ultrasound-

RF ping receiving mode by setting some flags in the MAC layer to prepare

for interception of the packet and sends a GO packet.

6. Upon receiving the GO packet, the RangeMote on the 3pi sends exactly one

RF packet and exactly one ultrasound ping @42kHz.
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7. If both transmissions are received, the TrackBot’s Openmote estimates the

TDoA and sends it to the mbed which then rotates the platform to the next

orientation. If the TDoA process fails, the Openmote timeout and returns 0

to the mbed.

8. After rotating the platform by one step, the mbed controls the Openmote to

repeat the procedure from Step 3 to Step 7.

9. If a full 360◦ rotation of the platform is complete, the mbed processes the

TDoA data to estimate the angle and the distance. The TrackBot’s Openmote

switches back to channel 26 for Tracking mode.

Before evaluating the ARREST system on the basis of the TDoA ground truth

system, we first evaluate the performance of the TDoA system. We found that the

worst case distance estimation errors in TDoA systems are in the order of 10−20 cm,

as illustrated in Fig. 4.11a. The angle estimation statistics presented in Fig. 4.11b

demonstrates highly accurate performance in angle estimations. The slight chances

of getting an error of 18◦ are justifiable by our choice of ranging rotation step size

of 18◦. Thus, our TDOA system is accurate enough to be considered as a ground

truth in the line of sight situations. Nonetheless, we monitor the ranging outputs to

trigger retries in case of very inaccurate outputs or momentary failures. Moreover,

in non-line of sight situations, we still rely on manual measurements as the TDoA

system fails in such scenarios.
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Figure 4.11: TDOA based Localization System Performance: (a) Distance Estima-
tion Errors and (b) Angle Estimation Errors

4.5.3.2 Different Experimental Settings

With the aforementioned setup, we performed a range of experiments over months

of duration with each run lasting for 1 − 2 hours. For the ARREST setup, we

use the Pragmatic policy with the weighted average angle estimation because of

its superior performance in our emulations and small-scale experiments. The LQG

setup is also kept same as the small-scale experiments. To diversify the situation

we have performed experiments in four different classes of settings.

� Large (≥ 15m× 10m) office rooms with lots of computers, reflective surface,

and cluttered regions.

� Long hallways (≈ 200m long and 5− 10m wide) with lots of turns.

� Open ground floor spaces (≈ 30m× 30m) with pillars.

� Homelike environments with couches, furniture, and obstacles.
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4.5.3.3 Performance Analysis

In Fig. 4.12a, we present the statistics of the absolute distance between the TrackBot

and the LeaderBot throughout the duration of the experiments in all four scenarios.

Figure 4.12a shows that the absolute distance is bounded by 3.5 meters in all

four scenarios which further verifies our small scale experiment results presented in

Fig. 4.9. Another noticeable fact from the figure is that ARREST system performs

worst in the cluttered office scenarios which is justifiable due to presence of a lot of

reflecting surfaces as well as obstacles.
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Figure 4.12: Real Experiment Based Performance for Large Scale: (a) Absolute
Distance in Meters, (b) Absolute Distance Estimation Error in Meters, and (c)
Absolute Angle Estimation Error in Degrees

Similar statistics can be seen in the absolute LQG distance error plot presented

in the Fig. 4.12b. Figure 4.12b shows that the instantaneous absolute distance errors

are ≤ 100cm with ≈ 90% probability, except in the office scenario (≈ 70%). The

comparatively higher distance errors for office scenarios is due to overestimation of
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distances in NLOS scenarios and in presence of strong multipath signals. However,

this does not affect the performance much as the temporarily predicted higher

distance tends to only lead to a temporary higher velocity of the TrackBot. In

summary, the distance error statistics is also similar to the distance error statistics

from the small-scale experiments. Similar pattern can be observed in the angle

estimation error plots presented in Fig. 4.12c. Again the office space performance

is worst. The open space performance is prominently better than the other scenarios

due to the absence of any sort of multipath signals. The instantaneous angle errors

are less than 40◦ with high probability (≈ 85%) in overall statistics. However

the scenario specific errors statistics (error being less than 40◦) vary from ≈ 75%

probability in indoor setting to ≈ 100% probability in the outdoor settings. This

slight discrepancy between small scale and large scale angle error performance is

mainly due to different environment settings as evident from the Fig. 4.12c itself. In

Fig. 4.13, we present a sample illustrative trace of a large scale hallway experiment,

drawn based on manual reconstruction from a video recording and markings on the

floor.

4.5.3.4 Multipath Adaptation

Similar to small-scale experiments, we perform a set of experiments with a static

Leader not in the line of sight of the TrackBot for ≥ 50% of the TrackBot’s path.

Due to the TrackBot’s ability to leverage a good multipath signal, the TrackBot
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Figure 4.13: Full Path Trace for a Sample Large Scale Experiment (Blue =⇒
Leader, Red =⇒ TrackBot)

was able to find the Leader in 70% of the cases. However, we also notice that it

fails dramatically if the TrackBot falls into a region with no direct path as well

as no strong multipath signals (i.e., there exist multiple similar strength multipath

signals). To overcome that, we add a Multipath Angle Correction module in the

CAST layer (refer to Fig. 4.3). This module triggers a randomized movement for

a single LQG period if: (1) the TrackBot hits an obstacle for 3 − 4 consecutive

LQG periods or, (2) the LQG estimated distance to the transmitter doesn’t change

much over 3− 4 consecutive periods. This policy basically leads the TrackBot to a

random direction with the hope of getting out of such region. However, we noticed

that if the TrackBot keeps following randomized direction for consecutive LQG

periods, it harms the tracking performance. Thus, we have set a minimum time

duration (Five LQG periods in our implementation) between any two consecutive
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randomized movements. Note that, all these timing choices are made empirically

via a range of real experiments. With this strategy, we noticed an improvement

on the TrackBot’s success rate from ≈ 70% to a success rate of ≈ 95% in such

scenarios. However, the trade-off in such context is that the convergence in case of

a far away Leader (≥ 8m) is now slower by ≈ 15%.

Table 4.4: Summary of Large Scale Real-World Experiments

� Absolute distance estimation errors are < 100cm with probability ≈ 90% except
in the case of cluttered office environments.
� Average Absolute angle estimation errors are < 40◦ with probability ≈ 85%.
� The TrackBot stays within 3.5m of the Leader with probability ≈ 100% in all
scenarios of tracking.
� In NLOS scenarios, addition of a conditional randomization improves the success
rate from 70% to 95% but slows the converges by ≈ 15% for static far-away Leader.

4.5.4 Miscellaneous

4.5.4.1 Raw RSSI Data Analysis

Based on all our evaluations, we conclude that the presence of multipath signals

does not hamper the performance if there exists a direct line of sight. To justify this

further and to gather more insights on the system’s performance, we perform a raw

RSSI data analysis and calculate the unfiltered error statistics. In Fig. 4.14a, we

plot the RSSI pattern based distance estimation error statistics which demonstrates

that the accuracy of the directional antenna pattern based distance estimations are

in the order of less than 1 meter with 90% probability. On the other hand, Fig. 4.14b

shows that the RSSI pattern based angle estimation error are less than 40◦ with
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very high probability (≈ 80%) with some deviations due to multipath and random

changes in movement directions. Again, note that the error up to 40◦ is acceptable

due to our choice of directional antenna. We also verify the performance of the

RSSI based estimation for varying sampling rate. For these set of experiments, we

fix the distance and angle between the TrackBot and the Leader and properly set

the channel parameters before each experiment. Figures 4.15a and 4.15b present

the average distance errors and average angle estimation errors with 95% confidence

interval for varying sampling rate. Figure 4.15b shows that the angle estimation

performance deteriorates as the sampling rate is decreased which is self-justified.

The distance estimation actually does not vary much with the sampling rate.
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Figure 4.14: Raw Data Analysis: (a) Distance Estimation Errors and (b) Angle
Estimation Errors

Our numbers may even appear to be better than those typically reported for

RSSI based localization (where typical accuracies are ≈ 2m − 5m or higher), but

this is attributed to the fact that the distance estimates use the average of 40 −
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200 samples, one from each sample’s respective antenna orientation. This analysis

also suggests that we can use sampling rate of 100 samples/rev to achieve similar

performance. Nonetheless, we stick with 200 sample/rev as we notice a loss of

maximum 70− 90 samples per revolution in severe scenarios.
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Figure 4.15: Estimation Performance for Varying Sampling Rate: (a) Distance
Estimation Errors and (b) Angle Estimation Errors

4.5.4.2 Different Sensing Modalities

While our proposed ARREST architecture employs pure RSSI based distance, an-

gle, and speed estimations, the same architecture can be easily adapted to use

other technologies such as cameras or infrared sensors. In such cases, we just need

to modify the CANE layer of the ARREST architecture and feed the relative posi-

tion approximations to the CAST layer. Now, each of these estimation technologies

i.e., camera-based or RF based estimations, have different accuracies in terms of
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distance and angle estimations. To analyze the tracking performance of the AR-

REST system, oblivious to the actual technology used in CANE layer, we perform

a set of simulation experiments where we control the average errors in the distance

and the angle estimations. Figure 4.16a illustrates one instance of such experiments

where we fix the average angle error (0 in this case) and vary the average distance

estimation error. Figure 4.16a shows that the effect of positive estimation errors

(dorg − de > 0, where dorg is the actual distance) have a more detrimental effect on

the tracking performance than negative errors. This is justified as positive distance

estimation errors imply always falling short in the movements, whereas, negative

errors imply over-estimations and more aggressive movements. It is also noticeable

that there exists an optimal value of average distance estimation error. The value

of this optimal distance error depends on the maximum Leader speed as well as av-

erage angle error. Next, we plot the relation between average tracking distance and

average angle error while the average distance error is kept to be 0 in Fig. 4.16b. It

is obvious and quite intuitive that the best tracking performance is obtained for an

average angle estimation error of 0. Note that, we do not control the speed error

separately as it is directly related to the angle and distance estimations. This anal-

ysis demonstrates the versatility of our ARREST architecture to tolerate a large

range of estimation errors. More specifically, it tolerates up to 5m average distance

error and 45◦ average absolute angle error in a successful tracking application. This

analysis also shows that while RSSI based system is not optimum, it has reasonable
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performance compared to the best possible ARREST system (with zero distance

and angle estimation error).
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Figure 4.16: Performance of the ARREST System in Terms of Controlled Estima-
tion Errors: (a) Fixed Angle Estimation Error, and (2) Fixed Distance Estimation
Error

4.6 Discussion

In this study, we proposed ARREST, a pure RF based relative localization and

tracking system, for autonomously following an RF-emitting object. The proposed

ARREST system employs a rotating directional antenna to approximate the rela-

tive distance, orientation, and speed, that is further utilized by an LQG controller

to improve the estimates and to autonomously control the motion of the following

agent i.e., the TrackBot. Through a set of emulations and real-world experiments

using our TrackBot prototype, we demonstrated the performance and error statis-

tics of our system. Moreover, for ground truth evaluation we developed another
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system for relative localization in line-of-sight situations by using the concept of

TDoA for simultaneous RF and Ultrasound transmissions. Note that while the

problem formulation of this study deals with only close bounded proximity (≤ Dth)

maintenance, it can be easily switched to a different yet similar objective where the

Trackbot is required to stay at a distance, Dl
th ≤ d ≤ Dh

th with Dl
th and Dh

th being

the lower and upper bounds of the distance, respectively. One simple method for

doing that would be to replace d[n] with (d[n] − Dl
th) and Dth with (Dh

th − Dl
th).

Based on the application context, one can switch between these two types of for-

mulations. Nonetheless, there exist some potential directions for further research

such as incorporating game theory and optimality conditions into the system.
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Chapter 5

Interference Power Bound Analysis for Network

Formation Control in RWN

In this study, we consider a fundamental problem concerning the deployment of a

robotic wireless network: to fulfill various end-to-end performance requirements, a

“sufficient” number of robotic relays must be deployed to ensure that links are of

acceptable quality. Prior work has not addressed how to find this number.1 We use

the properties of Carrier Sense Multiple Access (CSMA) based wireless communi-

cation to derive an upper bound on the spacing between any transmitter-receiver

pair, which directly translates to a lower bound on the number of robots to deploy.

We focus on SINR-based performance requirements due to their wide applicability.

We show that the bound can be improved by exploiting the geometrical structure

of a network, such as a linearity in the case of flow-based robotic router networks.

Furthermore, we also use the bound on robot count to formulate a lower bound

1The material in this chapter is based in part on the work in [150].
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on the number of orthogonal codes required for a high probability of interference-

free communication. We demonstrate and validate our proposed bounds through

simulations.

5.1 Problem Description

In this section, we detail our problem formulations. For compactness, we list the

symbols used for base problem formulation in Table 5.1 and symbols related to

our goals in Table 5.2, respectively. Say, we have a transmitter node T and a re-

ceiver node X that are placed at d distance apart, alongside with a larger number

of interfering wireless nodes. Each node of this interference limited network (i.e.,

the interference dominates over noise) employs Channel Sense Multiple Access with

Collision Avoidance (CSMA/CA) [18] for wireless media access and has a trans-

mission power of Pt. The radio range of each node is subdivided into three regions,

centered at the node’s location: a circular connected/contention region of radius

D1, an annular transition region with inner radius D1 and outer radius D2 (includ-

ing the boundaries), and a disconnected region which is the entire region outside

the circle with radius D2 > D1; where the values of D1 and D2 depend on the

actual RSSI thresholds of the devices used [151]. Undoubtedly, in the presence of

fading, the regions are not so nicely structured, nonetheless, can be approximated

by proper choice of D1 and D2. Now, the CSMA restricts simultaneous transmis-

sions from the nodes in the contention region of T , while the nodes in the transition
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region are aware of T ’s transmission with very low probabilities and, therefore, are

the potential interferers. However, only a subset of the nodes in the transition re-

gion can be active simultaneously, due to CSMA among themselves, which requires

any two simultaneous interferers to be at least D1 distance apart. The interference

power from a node in the disconnected region is considered insignificant.

Table 5.1: General Parameters

Symbol Description
T Transmitter
X Receiver
dij Distance between node i and j
d Distance between T and X i.e., dTX
η Path Loss Exponent

ψ ∼ N (0, σ2) Log normal Fading Noise with variance σ2

Pt Transmitted Signal Power
Pr Received Signal Power
PI Received Interference Power
IC Interference Set Cover
M Number of Flows

Table 5.2: System Parameters

Symbol Description
SIRth The Target Minimum SIR
SIRX(d) Minimum Achievable SIR at X for d separation

D1 Contention Region Outer Radius
D2 Transition Region Outer Radius
γ Required Probability of SIR ≥ SIRth

κ Minimum probability of interference
free communication

dmax Maximum distance allowed between T and X
NO Number of Orthogonal Codes
Nmax
I Maximum Number of Interfering Nodes
NR Minimum Number of Nodes to Deploy
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Definition 5.1.1. A set of interfering nodes (IC) such that D2 ≥ diT ≥ D1 and

dij ≥ D1 ∀ i, j ∈ IC, is referred to as an Interference Set Cover.

Now, there are four main objectives of this work as follows.

Objective 5.1.1. Find a mapping between d and the minimum achievable SIR at

X, SIRX(d).

Objective 5.1.2. Find the range, 0 < d ≤ dmax, such that the outage probability

i.e., P(SIRX(d) < SIRth) < γ where 0 ≤ γ ≤ 0.5 is the choice of the designer.

Now, one can employ a set of orthogonal codes to further restrict the interference

in a CSMA network. In such cases, the maximum value of interference power

decreases, based on the number of codes employed, possibly leading to near zero

interference. In this context, our goal is as follows.

Objective 5.1.3. Characterize SIRX(d) as a function of the number of orthogonal

codes (NO) employed for concurrent transmissions, and find a bound N ′O such that

P(1I0 = 1) ≥ κ ∀NO > N ′O, where the indicator function 1I0 refers to interference

free communication and κ ≥ 0.5 is a designer choice.

For our SIR and Interference bound analysis, we consider two different scenarios

in this study. In the first scenario, the node pair in focus is placed in a “dense”

network, where a countably many uncontrollable wireless nodes are co-located in

the area of interest. Secondly, we consider our target application of robotic router

placement, where the goal is to place a set of robots such that they form multihop
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links between a set of maximum M concurrent communication end-point pairs.

This application context restricts the possible configuration of the interfering nodes

within a class of network formations, such as straight line formation, that voids the

earlier dense network assumption. At any time instance, we associate a set of routers

with each flow i ∈ {1, 2, · · ·M} that form a chain between the communication

endpoints.

For a fixed set of communication endpoints of a flow i, the minimum number

of nodes (NRi ) to be allocated to flow i depends on dmax which in turn controls the

minimum number of nodes to be deployed, NR ≥
∑M

i=1N
R
i .

Objective 5.1.4. Find a better and tighter bound on interference as well as SIR by

exploiting the application specific restrictions on the network configurations. Next,

analyze the improvement in the number of robots required, with this improved bound.

5.2 Outline of the Proposed Solution

In this section, we summarize our methodologies for achieving the target objectives

while the details are discussed later on.

5.2.1 Methodology for Mapping from d to SIRX

For a fixed value of the separation distance d between T and X, we estimate

the maximum feasible interference as well as minimum feasible SIR, by exploiting
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the geometry of the connectivity region and transition region. For received power

modeling, we opt for the standard lognormal fading model [18], where the received

power is distributed lognormally with mean power calculated using simple path loss

model. Thus, the received power can be represented as:

Pr(d) = Q.Ptd
−η10

ψ
10 (5.1)

where Q is some constant. Next, we introduce the following claim as our whole

estimation process revolves around this claim.

Claim 5.2.1. In presence of Independent and Identically Distributed (I.I.D) fading

noise, the Interference Set Cover (see Definition 5.1.1) with maximum mean power

as well as the maximum number of interferers will give us better stochastic bound

than any other Interference Set Cover.

Justification. This claim is justified by the fact that, if the fading noise is I.I.D, the

Interference Set Cover with the maximum number of nodes will give the highest

variance. Thus, the Interference Set Cover with highest mean as well as highest

number of nodes will be a better bound than any other Interference Set Cover.

Now, the main steps for representing SIRX as a function of d are as follows.

Step 5.2.1. We first identify the Interference Set Cover(s) (IC) that will potentially

give us the best estimate of the maximum feasible mean interference power, for a

fixed d, using the greedy algorithm.
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Step 5.2.2. We estimate the maximum cardinality of an Interference Set Cover,

Nmax
I . This number is used in a later step to compensate for non-optimal greedy

solutions from Step 5.2.1.

Step 5.2.3. To get the maximum interference power, we add up the interference

powers of the nodes of the Interference Set Covers selected in Step 5.2.1, according

to Eqn (5.1). Thus the total interference power at X is a sum of lognormal variables

as follows.

PIC (d) = Q.
∑
j∈IC

Ptd
−η
jX10

ψ
10 (5.2)

Step 5.2.4. We multiply the interference power estimate in Step 5.2.3 by a cor-

rection factor ζ = max{1, N
max
I
|IC | }, where |.| denotes the cardinality of a set, to

account for the Interference Set Covers with less than Nmax
I number of nodes, i.e.,

|IC | < Nmax
I . Now, the modified interference power is:

PIC (d) = ζ.Q.
∑
j∈IC

Ptd
−η
jX10

ψ
10 (5.3)

Step 5.2.5. We calculate the SIR value for each of the Interference Set Covers

selected in Step 5.2.1 in dB, as follows.

SIRX(d) = 10 log10

(
Ptd

−η10
ψ
10

ζ.
∑

j∈IC Ptd
−η
jX10

ψ
10

)
(5.4)
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5.2.2 Methodology for Selecting dmax

In order to properly select dmax, first of all, we need to estimate the distribution of

the SIRX(d) using Eqn (5.4), which is not very straightforward as it involves divi-

sion and summation of a large set of lognormal random variables. The traditional

log normal summation methods involve sampling and filtering to fit the distribu-

tion into an approximated log normal [152]. We opt for similar approach where

we collect a good number of samples, say 50000, from each of the contributing log

normal distributions, for a fixed d, to generate the SIR samples (SIRX(d)) and use

the SIR samples to determine the mean, µSIRX(d), the variance of the SIR, σ2
SIRX(d)

and the empirical probability distribution function (PDF) of the SIRX(d). Note

that in presence of fading, using simple path loss model, we can easily get the mean

powers received from each interferer, which can be used to estimate E(Pr)
E(PI)

, but, not

the mean SIR, i.e., E(SIR) = E
(
Pr
PI

)
6= E(Pr)

E(PI)
.

Step 5.2.6. To properly select dmax, we first choose an acceptable value for SIRth

and γ. Next, we use the samples of SIRX(d) to estimate the outage probability

Γ(d) = P(SIRX(d) < SIRth), for a uniformly selected values of d ∈ [0, D1]. The

highest value of d that satisfies Γ(d) < γ is the estimated dmax.

5.2.3 Orthogonal Code Bound For Interference Free Network

First of all, say, NO number of orthogonal codes are used and each node chooses a

code randomly (all codes are equally likely to be chosen) and independently. The
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new code specific interference power bound for a randomly selected Interference Set

Cover (IC) will be:

PIC (d|OT ) =

|IC |∑
j=1

P j
IC × 1{Oj=OT }

E(PIC (d)) =
1

(NO)

|IC |∑
j=1

E(P j
IC )

(5.5)

where OT is the code chosen by the transmitter in focus (T ), P j
IC denotes the

interference power due to jth interferer in IC , and the indicator function 1{Oj=OT }

denotes whether the jth interferer have chosen same code as the transmitter i.e.,

OT . Notice that, the Interference Set Cover with maximum mean interference power

will still give us the maximum mean estimated interference power in presence of

orthogonal codes.

Step 5.2.7. We use the estimated Interference Set Cover from Step 5.2.1 to deter-

mine the new SIR bounds as follows.

SIRIC (d|OT ) =
Ptd

−η10
ψ
10

ζ.
∑

j∈IC

(
Ptd

−η
jX10

ψ
10

)
.1{Oj=OT }

(5.6)

Now, at any time instance, maximum Nmax = (Nmax
I + 1) number of nodes can

be active simultaneously. Given that NO ≥ Nmax, we deduce that:

P(1I0 = 1) ≥
Nmax∏
i=1

(
1− i− 1

NO

)
(5.7)
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Proof. Say, at any time instance, the number of active interferers is NI ∈ [0, Nmax
I ].

Given that NI number of nodes are active and NO ≥ NI , the probability of inter-

ference free communication is as follows.

P(1I0 = 1|NI) =
NOCNI ×NI !

(NO)NI
=

NI∏
i=1

(
1− i− 1

NO

)

=⇒ P(1I0 = 1|N1
I) ≥ P(1I0 = 1|N2

I) if N1
I ≤ N2

I ≤ NO

(5.8)

Thus, the probability of interference free transmission for NO ≥ Nmax, where

Nmax = Nmax
I + 1, can be expressed as follows.

P(1I0 = 1) =
Nmax∑
j=0

P(1I0 = 1|NI = j)P(NI = j)

=
Nmax∑
j=0

j∏
i=1

(
1− i− 1

NO

)
P(NI = j)

≥
Nmax∏
i=1

(
1− i− 1

NO

)Nmax∑
j=0

P(NI = j) Using (5.8)

≥
Nmax∏
i=1

(
1− i− 1

NO

)
(5.9)

From Eqn (5.7), we can see that for NO ≥ Nmax,
∏Nmax

i=1

(
1− i−1

NO

)
is a strictly

increasing function of NO.

Step 5.2.8. To find the optimum value of NO, we estimate
∏Nmax

i=1

(
1− i−1

NO

)
for

increasing value of NO (starting from Nmax), and select the minimum value of NO

such that
∏Nmax

i=1

(
1− i−1

NO

)
≥ κ.
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5.3 Identification of Maximum Power Interference

Set Cover

In the section, we identify the Interference Set Covers that result in the highest

total interference power at a given receiver location, X, for both scenarios i.e.,

dense random network and robotic router network.

5.3.1 Dense Random Network

In [97], Hekmat and Van Mieghem showed that the mean interference power in

CSMA Network is bounded by the interferers located along the hexagonal rings

centered at the receiver’s location, where the ith ring with each side length equal

to i×D1 contains 6 ∗ i nodes. While the assumption of putting the receiver at the

center is valid in the presence of RTS/CTS mechanism in CSMA, in the reality,

RTS/CTS mechanism is NOT employed in most of the enterprise wireless networks

as well as the Internet of Things (IoT) networks. In such cases, the transmitter is

the node to be located at the center of the rings while the receiver is free to be located

anywhere in the connected region of T and, as a result, the maximum feasible inter-

ference is actually dependent on the separation distance (d). However, hexagonal

packing is known to be the densest packing in circular spaces which leads us to be-

lieve that the distance-dependent interference is also bounded by the interference

power of the set of interferers located at hexagonal rings (similar to [97] but in an
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annular ring) around the transmitter’s location. With this assumption, our focus

becomes restricted to all possible sets of locations that form such hexagonal pack-

ing. Moreover, we prove that with the separation distance d > 0, we only need to

consider two different angular orientations of such hexagonal packing, as illustrated

in Figures 5.1a and 5.1b.

(a) Configuration1 (b) Configuration2

Figure 5.1: Illustration of the Interference Set Covers For Estimation of Interference
Upper Bound in a Dense Network

In the first type of configuration, which we refer to as Configuration 1, the clos-

est interferer is located at the intersection of the inner boundary of the annulus

and the line joining T and X (Illustrated in Figure 5.1a). This configuration is

generated by taking a greedy iterative approximation approach, where we start with

an empty IC and, in each iteration, we select a point on the annulus that is closest

to the receiver X and is not located in the connected regions of the nodes already

added to IC. In the second configuration, which we refer to as Configuration 2
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(illustrated in Figure 5.1b), the number of closest interferers is two and they are

exactly D1 distance apart from each other as well as from the transmitter. With

this new initial condition, we can find the rest of the nodes, again, using the greedy

approach. The positions of the interfering nodes for both of these Interference

Set Covers are detailed in Table 5.3. These two configurations form the bound of

the interference power for any configuration within same class i.e, with the similar

relative position between nodes with hexagonal corner positioning. Next, we calcu-

late the interference and SIR for these two configurations according to Eqn. (5.3)

and (5.4). Then, we choose the maximum of these two interference estimates as

our interference estimate and the minimum of these two SIR estimates as our SIR

estimate. We perform this using the sampling method discussed in Section 5.2.2,

where we collect a large number of pairs of samples from these two configurations

and take the highest interference power sample (or lowest SIR sample) from each

pair as a sample for our estimated bound.

However, since this is a greedy solution, the resulting Interference Set Cover

combination may not include the maximum number of interferer and, therefore,

does not guarantee maximum possible interference power. Now say the greedy

logic includes n interferes. Then according to the greedy logic, it is guaranteed

that the top n interfering nodes of the maximum power Interference Set Cover will

have less or equal interference power compared to the interference power from the

greedily found Interference Set Cover. To guarantee that our estimated interference
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Table 5.3: Interference Set Cover Node Locations for a Dense Network

Line Number
Configuration 1 Configuration 2(Illustrated in

Figs 5.1a and 5.1b)

l0
{(±jD1, 0)} {(0,±jD1)}

N0 = bD2−D1

D1
c∀j ∈ {1, 2, · · · , N0 + 1} ∀j ∈ {1, 2, · · · , N0 + 1}

lk where k is odd
{(±D1(1+2×j)

2
,
√

3
2
kD1)} {(

√
3

2
kD1,±D1(1+2×j)

2
)}

Nk = b(D
2
2−

3
4
k2D2

1)
1
2

D1
c

∀k ∈ {1, b 2D2√
3D1
c} ∀j ∈ {0, 1, · · · , Nk} ∀j ∈ {0, 1, · · · , Nk}

l′k where k is odd
{(±D1(1+2×j)

2
,−
√

3
2
kD1)} {(−

√
3

2
kD1,±D1(1+2×j)

2
)}

Nk = b(D
2
2−

3
4
k2D2

1)
1
2

D1
c

∀k ∈ {1, b 2D2√
3D1
c} ∀j ∈ {0, 1, · · · , Nk} ∀j ∈ {0, 1, · · · , Nk}

lk where k is even
{(±jD1,

√
3

2
kD1)} {(

√
3

2
kD1,±jD1}

Nk = b(D
2
2−

3
4
k2D2

1)
1
2

D1
c

∀k ∈ {1, b 2D2√
3D1
c} ∀j ∈ {0, 1, · · · , Nk} ∀j ∈ {0, 1, · · · , Nk}

l′k where k is even
{(±jD1,−

√
3

2
kD1)} {(−

√
3

2
kD1,±jD1}

Nk = b(D
2
2−

3
4
k2D2

1)
1
2

D1
c

∀k ∈ {1, b 2D2√
3D1
c} ∀j ∈ {0, 1, · · · , Nk} ∀j ∈ {0, 1, · · · , Nk}

power is no less than the maximum possible interference power, we multiply our

estimated interference power by a correction factor, ζ (discussed in Step 5.2.4).

We determine the maximum number of concurrent interfering nodes (Nmax
I ) by

formulating the problem as a circle packing problem [153] as follows. Note that,

there exists a range of approximation solution to the circle packing problem [153],

which can be directly applied to solve this problem. In this study, we do not discuss

any circle packing solution.

Definition 5.3.1. Pack Problem: Maximize the number of circles with radius(
D1

2

)
that can be packed inside an annulus with inner and outer radius:

(
D1

2

)
and(

D2 + D1

2

)
, respectively.

Lemma 5.3.1. The cardinality of the solution to the Pack Problem is also the

maximum cardinality of an Interference Set Cover.
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Proof. A valid solution to the Pack Problem can be directly mapped to a valid

Interference Set Cover. To prove that, let us consider the set of centers, SP , for the

circles in the Pack Problem solution. For any valid solution to the Pack Problem,

the distance between the centers of the circles are at least R1 which satisfies the

Interference Set Cover distance condition. Now, the center of any circle to be

packed must lie in the annulus with radius R1 and R2 as the radius of the circles

are R1

2
. Thus SP is a valid Interference Set Cover. Next, assume the solution to

the pack problem, n, does not contain the maximum number of interferers. So

there must exist an Interference Set Cover with more than n interferer. However,

if we formulate a set of circles with the centers to be same as the Interference Set

Cover but with a radius equal to R1

2
, it is also a valid circle packing solution with

higher cardinality. This is a contradiction. Thus the earlier assumption is not true.

Conversely, say that the solution to the Pack problem has a higher cardinality than

the max cardinality of Interference Set Cover, we can always map the Pack problem

solution to a new Interference Set Cover with higher cardinality than the earlier

solution. This is also a contradiction, thus, proves the lemma.
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5.3.2 Interference Estimation for Robotic Router Network

In this section, we focus on the interference estimation for our application specific

context of a robotic wireless network in an obstacle-free environment. Before that,

we make an assumption, based on two related works [7, 9], as follows.

Assumption 5.3.1. For a flow based robotic network in an obstacle-free environ-

ment, if the goal is to optimize the flow performance in terms of SIR, the best

configuration of robots allocated to that flow is to stay on the straight line joining

the static endpoints.

This assumption is justified by the work presented in [7] which shows that the

best configuration of robots in order to optimize packet reception rate (which is di-

rectly related to SIR) of a flow-based network is to evenly place them along the line

segment joining the static endpoints. The work of Yan and Mostofi [9] further jus-

tify the linear arrangement of same flow nodes for Signal to Noise Ratio (SNR)

based optimization goal. In our analysis, we employ Assumption 5.3.1 to restrict

the feasible positions of the interfering nodes, thereby, leading to better and tighter

bounds on interference. In this context, we divide the interference into two compo-

nents: Intra-flow interference and Inter-flow interference. These two components

refer to the interference power from the nodes in the same flow as the transmitter

T and interference power from the nodes of different flows, respectively.
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Intra-Flow Interference Our intra-flow interference estimation is based on the

following lemma.

Lemma 5.3.2. The maximum expected intra-flow interference power for a link

corresponds to the sum of interference powers from nodes located at distances {D1, 2·

D1, · · · k ·D1} from the transmitter node T along the line segment joining the flow

endpoints, where k.D1 ≤ D2 (illustrated in Fig. 5.2).

Proof. Assumption 5.3.1 states that in the final configuration, the routers should

be placed along the line segment joining the sink and source, say lopt. Now, assume

that the first interferer in the worst case interference combination is located at

D1 + δ distance from the source, along lopt, instead of D1 where 0 < δ < (D2−D1).

Since, the distance between two interferer have to be greater than D1 for concurrent

transmission, the resulting set of interferers are located at I1 = {D1 + δ, 2 ∗D1 +

δ, · · · , k ∗D1 + δ} where k ∗D1 + δ ≤ D2. Now, the Interference Power is inversely

proportional to distance, more specifically d−η where 2 ≤ η ≤ 6 is the path loss

exponent. Now say, the receiver is located at distance d from the transmitter on the

same side as the interferers. Therefore, the power of the interferer located at D1 +δ

is less the the power of interferer located at D1 as 1
(D1−d)η

≥ 1
(D1+δ−d)η

. Similarly

if the receiver is located at distance d from the transmitter on the other side i.e,

the distance between the first interferer and the receiver is D1 + δ + d, the power

of the interferer located at D1 + δ is less the the power of interferer located at D1

as 1
(D1+d)η

≥ 1
(D1+δ+d)η

Thus, if we exchange the first interferer position with D1 i.e,
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I2 = {D1, 2∗D1+δ, · · · , k∗D1+δ} where k∗D1+δ ≤ D2 then we get set of location

with total interference power higher than that of I1. This is a contradiction. Thus

the earlier assumption is wrong, thus, proves the lemma.

Figure 5.2: Illustration of the Highest Power Intra-Flow Interference Set Cover

Therefore, the maximum number of intra-flow interferers is 2
(
bD2−D1

D1
c+ 1

)
,

where the factor 2 accounts for both sides.

Inter-Flow Interference In realistic scenarios, there will be more than one flows

in the network where robots assigned to different flows can interfere as well. We

refer to such interference as the Inter-flow interference. Now, the interferers can

be located in the annular transition region around the transmitter, while the nodes

allocated to same flow stay on the straight line joining the endpoints of the re-

spective flow (according to Assumption 5.3.1). In this section, we start the bound

estimation for a two flow network, followed by a network with M flows. In this

context, we make a key assumption about the maximum power Interference Set

Cover for the multi-flow scenario, as follows.
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Assumption 5.3.2. For any transmitter-receiver node pair of a flow, the intra-flow

maximum power Interference Set Cover estimated in section 5.3.2 is always part of

the maximum power Interference Set Cover in presence of multiple flows.

(a) Two flow Case (b) M Flow Case

Figure 5.3: Illustration of the Multiple Flow Interference Estimation (Blue Nodes:
Intra-Flow Interferer, Red Nodes: Inter-Flow Interferer)

The reason behind this assumption is mainly the fact that in practical deploy-

ment, some node-pairs might not have any inter-flow interference at all (e.g., single

flow network). Therefore, neglecting any of the intra-flow interfering nodes will lead

to an incorrect estimate of the interference in such cases. Under the given assump-

tion, our next step is to find another line segment that will generate the maximum

inter-flow interference power, for two flow cases. In general case with M flows, we

need to find M − 1 other line segments such that carefully placed set of interferers

on those segments result in the highest inter-flow interference power. Now, follow-

ing the greedy approach mentioned in the Section 5.3.1, the second flow should
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contain Y2 or Y3 or both, in Figure 5.3a, since they are the next closest points to X

after the Intra-flow interference set cover nodes are accounted for. We prove this

by introducing two lemmas as follows.

Lemma 5.3.3. The length of the chords of an annulus with inner radius D1 and

outer radius D2, located at dr < D1 distance from the centre increases monotonically

with dr.

Proof. Lets take a random chord of the annulus, located at dr distance from the

center with dr < D1. Then the length of the chord is equal to g(dr) =
√
D2

2 − d2
r −√

D2
1 − d2

r. Now taking derivative of g(.) as follows.

g′(dr) = − dr√
D2

2 − d2
r

+
dr√

D2
1 − d2

r

= − 1√
(D2

dr
)2 − 1

+
1√

(D1

dr
)2 − 1

> 0 as D2 > D1 and dr < D1

(5.10)

This implies that g(.) is a strictly increasing function of dr, which proves our

lemma.

Lemma 5.3.4. Among the possible line segments through Y2 or Y3 or both, we

just need to consider lZ and lW in Figure 5.3a for estimating the bound on the

interference power for two flow case.

Proof. WLOG, we assume that Y2 must be part of the interfering set cover. Next,

for proving this claim, we subdivide the angular region around point Y2 into four
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regions, demonstrated in Figure 5.3a. For region I and IV we can show that the

maximum interference power from any flow, placed along any line in that region,

is upper bounded by the interference power from a flow located on lZ as shown

in Figure 5.3a. For any random line l in Zone I, the next interfering nodes on

either side of Y2 are, say, P1 and P2 while the same for lZ are Z1, Z3, respectively.

From triangular geometry, ||XP1|| ≥ ||XZ1|| as ||Y2P1|| = ||Y2Z1|| = D1 whereas

||XP2|| ≥ ||XZ3|| (Due to the presence of node Y4). Thus the interference power

from Z1 is greater than or equal to P1, and the interference from Z3 is greater

or equal to the interference from P2. This way we can show that the maximum

interference power from a flow located along lZ is always ahead of the same for l

with the same number of interferers on either side of Y2. Furthermore, using the

properties of an annulus along with Lemma 5.3.3, it can be easily shown that the

length of l is less than the length of lZ and therefore can support less number of

simultaneously interfering nodes than lZ . Thus, the maximum interference power

from a flow on l is less than the maximum interference power from a flow on lZ . Due

to symmetry, we can similarly prove that the interference power from a flow located

along any line l in Zone IV is always upper bounded by the maximum interference

power from a flow located along lZ .

Now, for region II and III, we claim that interference power from a flow located

along any random line segment l is always upper bounded by the maximum in-

terference power of a flow located along lW . In such cases, the power from P2 is
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less than the power from Y3, whereas the power from P1 is greater than the power

from W1, or vice versa. Thus, there is no straightforward dominance of the power

from either line segment. Instead, the sum of the power dominates for lW . To show

this, we perform a brute force simulation algorithm where we first add up the total

interference power from Y3 and W1, and P1 and P2, respectively, which verified that

the former is always higher than later. Similarly, we perform a simulation to show

that the maximum interference power from a flow along l is always upper bounded

by the maximum interference power from a flow along the line lW .

Table 5.4: Interference Set Cover Node Locations for a Flow Based Network

Line Number
(Illustrated in Figures 5.3b)

lW,k
{((2k + 1)D1

2
,±(

√
3

2
D1 + jD1))}

∀k ∈ {0, b (D2−D1)
2D1

c} ∀j ∈ {0, 1, · · · , NW,k}

l′W,k
{(−(2k + 1)D1

2
,±(

√
3

2
D1 + jD1))}

∀k ∈ {0, b (D2−D1)
2D1

c} ∀j ∈ {0, 1, · · · , NW,k}

NW,k = b

(
D2

2−
{(2k+1)D1}

2

4

) 1
2
−
√
3

2
D1

D1
c

Using lemma 5.3.4 and the greedy logic, we can find the set of nodes on lW (or lZ)

that will result in highest interference power, detailed in Table 5.4. Surprisingly, the

maximum power interference set cover node locations on lZ are same as the line l1

of Configuration 1. Now, the inter flow interference power is max{P lW
I (d), P lZ

I (d)},

where P lW
I and P lZ

I denotes the total maximum interference power for nodes in

line lW and lZ , respectively. Next, we extend this concept to M flow scenario i.e.,
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maximum M − 1 interfering flows. For a fixed pair of transmitter and receiver

node of a flow with M − 1 interfering flows, we need to consider two class of

configurations. The mean inter-flow interference power bound of the first class of

configurations is calculated by summing up the total interference power of the first

M ′ lines from the set {l1, l′1, l2, l′2, · · · , lK , l′K} in Figure 5.1a, where K = b 2D2√
3D1
c

and M ′ = min{M − 1, 2K}. Now, for the bound estimation of the second class

of configurations, we consider the line segment joining the closest pair of nodes at

any point in time. More precisely, we choose M ′ pairs of nodes from the pairs

illustrated in Figure 5.3b as {(Z1,W1), (Z2,W2), (Z ′1,W
′
1), (Z3,W3), · · · , (Z ′K ,W ′

K)}

where K =
(
b (D2−D1/2)

D1
c+ 1

)
, M ′ = min{M − 1, 2K}, and the pairs are sorted in

terms of the respective distances to the receiver. Thus, the flows situated along lines

lW,i and l′W,i , i ∈ {1, 2, · · · , K} determine the second type of interference bound

in our estimation. Next, we compare these two bounds and take the maximum of

them as the estimated interference power bound.

5.4 Simulation Results

In this section, we verify our proposed d dependent bounds on the interference and

SIR, through a set of MATLAB 8.1 based experiments performed on a machine

with 3.40 GHz Intel i7 processor and 12GB RAM. For this set of experiments, we

fix the values of the transmitter powers and the path loss exponent at Pt = 1Watt

and η = 2.2, respectively. The value of η = 2.2 is motivated by our experiences
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Figure 5.4: (a) Validation of Estimated Interference Power (Top) and SIR (Bottom)
Bounds in dB, for Dense Network with No Fading (b) Probability that Actual SIR
is Lower than the Estimated Minimum SIR in Presence of Log-Normal Fading with
Variance σ2 = 4 (c) Probability that Actual SIR is Lower than the Estimated
Minimum SIR with NO Fading but in Presence of 10 Orthogonal Codes

from real-world experiments presented in Chapter 4. As a measure of the annular

transition region area, we choose the ratio of D2

D1
= {3, 6} as the typical RSSI
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CCA thresholds are separated by 10dB to 15dB [151]. The absolute value of D1 is

randomly selected to be 6m as the major factors that controls the performance is

the D2

D1
ratio, not the absolute values of D1 and D2.

First, we verify the bounds for a general dense network, where the interfering

nodes are uniformly distributed over the annular transition region around T . To

verify the bounds, we randomly generate 1000 sets of interfering nodes, for a fixed

value of d, using Algorithm 1. In Figure 5.4a, we compare our estimated interference

power and estimated SIR, with the interference powers and SIR of the generated

IS sets, for no fading scenario and D2

D1
= 3. Figure 5.4a clearly validates our d

dependent interference and SIR bounds for a general dense network in absence of

fading. Next, we perform similar experiments but in the presence of lognormal

fading of variance σ2 = 4 and D2

D1
= 3. In this set of experiments, we empirically

compute the probabilities, P(SIRIS < µSIRX(d)) , P(SIRIS < µSIRX(d) − σSIRX(d))

and P(SIRIS < E(Signal)
E(Interference

) and plot the results in Figure 5.4b. Figure 5.4b

shows that the estimated SIR mean (from Eqn (5.4)) is higher than the actual SIR

for around 25% of the cases, while µSIRX(d) − σSIRX(d) is higher than the actual

SIR for only 10% of the case. Thus, if we were to choose a deterministic value

for the bound rather than a distribution, µSIRX(d) − σSIRX(d) is considered as a

good estimate. Next, we validate our orthogonal code based SIR bounds for a code

alphabet of cardinality 10, while the maximum number of simultaneously interfering

node is 38 (For D2/D1 = 3). The results are plotted in Figure 5.4c, which shows
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that our proposed bound also works well in presence of orthogonal codes for log

normal fading scenario.

Algorithm 1 Generate a random set of Interferer

procedure Generate( )

Initialize a Dense Set of Nodes: ID

Initialize IS as a empty set

while ID is not Empty do

Randomly select v ∈ ID

IS = IS ∪ v

Bv = {i|i ∈ ID & div < D1}

ID = ID \ Bv

end while

end procedure

Similar to the generic dense wireless network, we perform a set of bound tests

for the robotic network scenario for D2

D1
= 3. In this case, we randomly select two

pairs of endpoints (i.e., we consider a 3 flow network) along the circumference of

the outer circle with radius D2, which are the flow endpoint for the two other flows.

Next, we place a dense set of points along each of the randomly selected flow seg-

ments as well as the line segment joining the transmitter T and the receiver X to

include the intra-flow interference. Then, we use Algorithm 1 to generate 1000 sets
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Figure 5.5: For a 3 Flow Network: (a) Validation of Estimated Interference Bound
(Top) and SIR Bound (bottom) with No Fading (b) Illustration of Less Number
of Robots to be Deployed with Our Application Specific Bound (No Fading) (c)
Probability that Actual SIR is Lower than the Estimated Minimum SIR with Log-
Normal Fading (Variance σ2 = 4)

of interfering nodes for each value of d and for each of the 500 randomly gener-

ated sets of flow endpoints. In all cases, the total interference power is bounded
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by our proposed theoretical maximum interference power, for no fading scenario,

as illustrated in Figure 5.5a. Figure 5.5a also shows that our application specific

bounds are much tighter than the generic bound. In order to illustrate the impact

of this improvement, we also plot the difference in the number of robots required

to cover a distance of 100m for different values of SIRth ∈ [−5dB, 5dB] in Fig-

ure 5.5b for D2

D1
= 3. Figure 5.5b clearly illustrates that with our improved bound,

the required number of robots to guarantee some target SIR requirements, is signif-

icantly lower than the generic bound based number of robots estimations, ranging

from a maximum of ∼ 45% for single flow network to a minimum of ∼ 10% for

a three flow network. The improvement is significant for less number of flows, as

for a higher number of flows (∼ 6 − 7 flows) the general dense network bound

becomes dominant, which is quite intuitive. Next, similar to the generic bound,

in Figure 5.5c we illustrate the SIR bound in presence of fading to show that the

estimated µSIRX(d) − σSIRX(d) is higher than the actual SIR for only 10% of the

case, for D2

D1
= 3.

5.5 Discussion

In this study, we proposed a method for estimation of the maximum interference and

minimum achievable SIR for a link of length d in an unknown environment while

CSMA-CA or equivalent MAC layer protocols are employed. First, we demon-

strate a strong dependency of these bounds on the transmitter-receiver separation
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distance d. Next, by considering two different scenarios: generic dense network and

robotic router network; we demonstrate that we can formulate better and tighter

bounds by exploiting the network topology structure which in fact improves our

main goal of estimating the number of nodes to be deployed for our robotic router

network in order to guarantee some network performance. We also performed a

set of MATLAB based simulation results that validate our findings. The analysis

and bounds presented in this chapter will guide an RWN system designer in the

proper selection of some of the deployment parameters such as the number of robots

required to fulfill the communication demands.
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Chapter 6

Routing and Data Collection Protocol for RWN

In this chapter, we present our third study which is focused on efficient routing

and data collection in a network of robots.1 While there exists a large body of

routing related works in mobile ad-hoc networks [155, 156], most of these works

do not take into account the controllability as a new routing dimension. Moreover,

the controllability demands an efficient routing protocol with delay guarantees. We

want to fill in this gap of the controllability aware routing and data collection by

building on top of a recently-developed queue-aware backpressure routing policy for

multi-hop wireless networks, inspired by Thermodynamics, called the Heat Diffu-

sion (HD) algorithm [2]. To this end, we present the first-ever decentralized version

on the implementation of the Heat Diffusion (HD) algorithm [2] for data collection

in RWN. We refer to this distributed version of HD protocol as the Heat Diffu-

sion Collection Protocol (HDCP). We choose a back-pressure based routing for our

study as backpressure protocols are proven to be effective for data collection with

1The material in this chapter is based in part on the work in [154].
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low overhead in wireless networks with dynamic link qualities [102]. This leads

us to believe that it is also an effective choice of routing protocol for a network

of robots. We choose HD algorithm in specific as it minimizes the overall queue

congestion of the network among the class of throughput optimal algorithms that

make decision based on only current queue occupancies and channel statistics as

well as provides additional significant improvements in average queue sizes (delay)

and average routing costs (such as ETX) compared to traditional Backpressure

routing [68].

Table 6.1: List of Symbols

Variables
Symbol Value Set Description
qi Z≥0 The Queue Backlog at Node i
qij Z The Queue Differential Between Node i and Node j
µij R+

0 Capacity of Link ij
ωij R The Calculated Weight of Link ij
fij Z≥0 The Number of Packets to be Sent for HD

Parameters
Symbol Value Set Description

β [0, 1] Pareto Optimal Trade-off Control Parameter for HD

6.1 The Heat Diffusion Routing: Theory and

Concepts

In this section, we detail the basic concepts behind the Heat Diffusion Routing

algorithm by building on top the concepts presented in Section 2.3. The Heat

Diffusion (HD) [2] routing has been derived from the combinatorial analogue of
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classical Heat-Diffusion equation in Thermodynamics. It uses the information about

estimated link capacities, µij(n), link cost factor, ρij(n), and queue backlogs, qi(n)

∀i ∈ V , to make the routing decisions to put fij packets at each time slot n. The

optimization goal of the HD algorithm for a wireless network in theory can be

described as follows [2, 111]:

Minimize: (1− β)Q+ βR

Subject to: (1) Throughput optimality, and

(2) Network constraints

(6.1)

where R =
∑

ij∈E ρij(fij)
2 is the Dirichlet average routing cost, Q =

∑
i∈V qi is the

average network queue size, and β ∈ [0, 1] is the control parameter to determine the

trade-off between these two optimization goals. Note that β is the only controllable

parameter in the HD formulation. Throughput optimality for a routing algorithm

refers to its ability to maintain all queues stable for all sets of arrival rates for which

it is possible by an omniscient router to maintain stable queues. Network constraints

include constraints on link rates as well as interference constraints. Next, we give

more concrete details on the HD routing algorithm. For clarity, we summarize the

symbols used in Table 6.1. Similar to the classic BP routing algorithm, the HD

routing algorithm has three steps: Link Weighing, Scheduling, and Forwarding.
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6.1.1 Link Weighing

Calculate the number of packets the link will transmit if it is activated at time-slot

n. In the original literature, this quantity is denotes by f̂ij(n), calculated as follows:

f̂ij(n) = min{φij(n)qij(n)+, µij(n)}

φij(n) = (1− β) + β/ρij(n)

(6.2)

where the Lagrange parameter β is defined in Eqn (6.1). Now, the link weights are

calculated as follows:

wij(n) = 2φij(n)qij(n)f̂ij(n)− f̂ij(n)2 (6.3)

6.1.2 Scheduling

Find a scheduling vector π ∈ Π such that:

Γ(n) = arg max
π∈Π

∑
ij∈E

πijwij(n) (6.4)

and the ties are broken randomly.
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6.1.3 Forwarding

At this step, send f̂ij(n) number of packets over the link ij if πij(n) = 1 and

wij(n) > 0. However, f̂ij(n) may be a fractional number. Therefore the actual

number of packets transmitted is:

fij(n) =


df̂ij(n)e if πij(n) = 1

0 otherwise

(6.5)

Note that, unlike BP routing, a node running HD routing sends fij(n) number

of packets rather than transmitting at the full capacity, µij(n).

In Table 6.2, we summarize the side by side comparison of the BP and the HD

algorithms. For a more detailed comparative analysis of the theoretical BP and HD

algorithms, interested readers are referred to the original HD paper [2].

Table 6.2: Contrasting HD policy with V-parameter BP policy (adapted from [2])

Weighing
f̂ij(n)

BP min
{
µij(n), qi(n)

}
HD min

{(
1−β + β/ρij(n)

)
qij(n)+, µij(n)

}
wij(n)

BP µij(n)
(
qij(n)− V ρij(n)µij(n)

)
+

HD 2
(
1−β + β/ρij(n)

)
qij(n)f̂ij(n)− f̂ij(n)2

Scheduling Γ(n) = arg max
π∈Π

∑
ij∈E πijwij(n)

Forwarding fij(n) =


df̂ij(n)e if πij(n) = 1

0 otherwise
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6.2 The Heat Diffusion Collection Protocol: From

Theory to Reality

In this section, we detail the Heat Diffusion Collection Protocol (HDCP) and the

modifications made to the theoretical HD protocol for practical implementation.

6.2.1 Predecessors

Before detailing the HDCP, we present a brief overview of two of the well-known

data collection routing protocols for a side by side comparison: Backpressure Col-

lection Protocol (BCP) and Collection Tree Protocol (CTP). Moreover, these two

protocols gave us insights on molding the promising theoretical HD algorithm into

a real implementation.

6.2.1.1 The Collection Tree Protocol

The Collection Tree Protocol (CTP) [105] is a tree based, best-effort, anycast data

collection protocol that was first introduced in [157]. There have been many practi-

cal implementations of CTP among which CTP Noe, presented in [105], is the most

popular one. The main idea of CTP is to maintain minimum cost trees to a set

of nodes that advertise themselves as the data sink/tree roots. The distance/cost

used in this context is in terms of the well-known metric called ETX. Each node
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calculates the shortest distance to a sink/root in terms of ETX and uses the respec-

tive next hop neighbor to send the data. In CTP, there exist two types of packets:

data packets and routing packets. While the data packets are used for actual data

transmission, the routing packets are used solely to setup/update the tree. For

setting up the tree, CTP uses a variant of the Trickle algorithm [158]. CTP uses

an adaptive beaconing technique to identify the neighbors, to calculate the shortest

path, and to adapt to node failures or link quality changes. To avoid routing loops,

CTP uses a datapath validation technique. In this technique, if a node receives a

packet from a node with lower or equal distance/cost (in terms of ETX) to a root,

it triggers a router repair phase and retries after a timeout. In contrast, neither

BCP nor HDCP relies on a predetermined routing path.

6.2.1.2 The Backpressure Collection Protocol

The Backpressure Collection Protocol (BCP) [102] is a distributed dynamic rout-

ing protocol which practically implements the idealized V-parameter BP algorithm

without the need for a global max weight scheduling. In this protocol, the link

penalty, ρij(n), in (2.7) is replaced by ETXij(n), which is the ETX estimate for

link ij at time-slot n. Therefore, the modified weighing function is as follows:

wij(n) = µij(n)(qij(n)− V.ETXij(n)) (6.6)
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In this distributed protocol, each node calculates the weight for each of its outgoing

links locally and chooses the neighbor with the maximum positive weight, if any, to

forward the next packet. It is shown in [102] that a last-in-first-out (LIFO) queue

implementation of BCP is better than first-in-first-out (FIFO) in terms of delay

performance. Also, floating or virtual queues are implemented to deal with the

problem of limited buffer size.

6.2.2 The Heat Diffusion Collection Protocol

The original HD algorithm is a centralized protocol where at each time slot the op-

timum non-interfering schedule must be computed. In our distributed implementa-

tion of the Heat Diffusion Collection Protocol (HDCP), every node decides the next

hop locally and greedily based on the weight calculations. Moreover, following the

logic of BCP the penalty/cost factor ρij(n) in (6.2) is replaced by ETXij(n) which

is the estimated ETX of the link ij at time-slot n. Thus, the modified equations

to calculate the link weights are as follows:

f̂ij(n) = min{φij(n)qij(n)+, µij(n)}

φij(n) = (1− β) + β/ETXij(n)

wij(n) = 2{(1− β) + β/ETXij(n)}qij(n)f̂ij(n)− f̂ij(n)2

(6.7)

Now, each node calculates the weight for each of its outgoing links and chooses

the link with the maximum positive weight. Note that, most of the variables
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in the weight calculation can be estimated or calculated during the operation if

provided with a value of β. We explain the choice of β in the next section, followed

by detailed descriptions of other components of the HDCP such as distributed

weight calculation, link ETX estimation, and our proposed link switching method

to improve the link qualities. Moreover, unlike the centralized algorithm’s NP-

hard maximum weight independent set time scheduling to avoid interference, our

distributed protocol handles interference by adaptive retransmissions and CSMA

based MAC access.

6.2.2.1 The β Parameter

In theory, for different choices of β, we should get different performance for HDCP

as the optimization goal changes for different values of β (Note that this parameter

is not part of the CTP and BCP formulations). If we choose β = 0, Eqn. (6.7) will

be simplified to:

f̂ij(n) = min{qij(n)+, 1} wij(n) = 2qij(n)f̂ij(n)− f̂ij(n)2 (6.8)

Now, for qij(n) > 0, f̂ij(n) = 1 as the queue differential can take only integer values.

Therefore, Eqn (6.8) can be rewritten as follows:

wij(n) =


2qij(n)− 1 if qij(n) > 0

0 Otherwise

(6.9)
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Therefore, the optimization goal becomes similar to the goal in the original “pure”

BP routing (by Tassiulas and Ephremides [68]) and it does not include the mini-

mization of ETX. Also, as the link weights solely depend on the queue differentials,

the delay performance should be better provided that the links are all very good2.

On the contrary, since this protocol does not try to minimize the ETX, it can choose

a bad link3 if the queue gradient on that link is the largest. As a consequence, the

average number of retransmissions faced by a packet also increases which is directly

translated to larger end to end delay. Therefore, if the overall path costs in terms

of ETX is the dominant factor in the end to end delay calculation, HDCP with

β = 0 may perform poorly in practice.

On the other hand, if β = 1, Eqn. (6.7) will be as follows:

f̂ij(n) = min{ qij(n)+

ETXij(n)
, 1} wij(n) = 2

qij(n)

ETXij(n)
f̂ij(n)− f̂ij(n)2 (6.10)

Similar to the previous case, we can simplify (6.10) as follows:

wij(n) =



2
(

qij(n)

ETXij(n)

)
− 1 if

qij(n)

ETXij(n)
≥ 1(

qij(n)

ETXij(n)

)2

if 0 <
qij(n)

ETXij(n)
< 1

0 Otherwise

(6.11)

2A link is very good/perfect if the ETX of the link is 1 which implies that every packet
transmission is successful on that link.

3We consider a link to be very bad if the ETX is ≥ 5 i.e., one successful transmission per every
five transmissions.
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In this case the optimization goal is mainly the reduction of overall path costs in

terms of ETX. Thus the overall ETX for a path should be improved for this case.

However, this might result in a slight increase in hop counts if the links are very

lossy. The first and last cases in Eqn. (6.11) correctly fulfill our routing requirement.

But the second case causes inefficiency in the real testbed experiments. In such

cases, even if the ETX cost is very high for a link and the queue differential is as

low as 1, a node will try to send the packet to that link according to the original

HD rule. Moreover, in practical experiments, the probability of falling under such

a situation is very high. Thus, it will negatively affect the overall performance of

the HDCP and needs to be avoided. Furthermore, provided that we have avoided

any such situations and have a good link with ETX = 1, a queue differential of

1 will still result in a positive weight thereby causing the protocol to forward the

packet. This results in an absence of a steady state queue gradient on such links.

This can potentially increase the number of hops traversed by the packets and also

deteriorates the goodput. In order to avoid both of these situations, we replace the

ρij(n) in Eqn (6.2) by V × ETXij(n) which modifies Eqn. (6.7) as follows:

wij(n) = 2{(1− β) +
β

V × ETXij(n)
}qij(n)fij(n)− fij(n)2 (6.12)

where fij(n) = df̂ij(n)e.

By setting V ≥ 2, we make it certain that there exists a steady state queue

gradient towards the sink. Therefore, a node will consider a link only if qij(n) is
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greater than ETXij(n). Thus, for a link with very high ETX, the queue differential

has to be higher in order to consider that link. Furthermore, this strategy also sat-

isfies the Backpressure criterion as for qij(n) < 0 =⇒ wij(n) < 0. In Section 6.4.2,

we present a practical experiment based analysis of the performance improvement

as a result of this change in weight calculation.

6.2.2.2 Updating Weights

In order to calculate the weights in a distributed manner, each node requires up-

dated information about the queue sizes of its neighboring nodes without affecting

the performance of the routing task. In our distributed implementation of HDCP,

we employ two techniques to do that. First, during a long period of inactivity,

each node periodically broadcasts a beacon with its current queue status similar

to common wireless access points. If a neighboring node receives this broadcast, it

will update its locally stored queue differential information. Second, when a node

sends a data packet, it includes its current queue state in that packet’s header. Due

to the nature of wireless links, every packet is received by all the neighboring nodes

(we assume that no advanced MAC protocol is employed that schedules nodes to

communicate in pairs at different times). Once a data packet is received by a node,

it sniffs the header of the packet to extract the queue information and updates the

local queue information database, even if the respective node is not the destination

of the packet. Note that, BCP follows similar technique for updating link weights.
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In CTP, there is no concept of queue differential based link weights. Rather, CTP

uses beaconing based ETX information to predetermine the routing paths.

6.2.2.3 Queue Implementation

Similar to BCP, the practical implementation of the HDCP can have a FIFO queue

or a LIFO queue implementation. Based on the observation in [102] that LIFO

queue implementation has a significantly better performance in terms of end-to-

end delay (which we also observed empirically), we present only the LIFO queue

implementation of the HDCP protocol in this study. We also adopt the virtual

“floating” queue approach proposed in [102] to prevent packet buffer overflows due

to the steady-state queue gradient.

6.2.2.4 Link Metric Estimation

One of our contributions in this study is to propose a new method of ETX cal-

culation for implementations of dynamic routing. Initially, we opted to follow the

ETX calculation technique from original BCP paper [102]. In that implementation

the estimation of ETXij for link ij is performed in an online manner where the

metric is updated by taking an exponential weighted moving average of the number

of retransmission attempts of the most recently transmitted packet. This is a very

effective way of ETX estimation for routing protocols that do not switch next hop

during retransmission i.e., use the same link ij for all the retransmission attempts.
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However, for Backpressure-based dynamic routing protocols, the next hop calcu-

lation is performed before each retransmission, for path diversity. In such cases,

we have to be very careful in calculating moving average since the same link may

not be used for all the retransmissions. Therefore, an attempt to update the ETX

for the most recently used link with the total number of retransmission attempts

might lead to an erroneous ETX estimation. To avoid this flaw, we can keep track

of all the links used as well as the number of tries on that link and update either

only the last used link or all the links after a successful packet transmission or a

packet drop.

As an alternative, we propose a 2-state discrete-time Markov Chain based ETX

estimation. In this method, we assume that each link can be either good (‘1’) or

bad (‘0’) at a certain point in time. With each state, we associate two transition

probabilities: good to good (p11), good to bad (p10), bad to good (p01) and bad to

bad (p00). Now the ETXij can be calculated as 1
p01

when the last state observed

was a 0, and as 1
p11

when the last state was 1.

We maintain four counters associated with each routing table entry to keep

track of different state transitions, denoted as c00, c01, c10 and c11. We also add

a Boolean variable to keep track of the last state of the link, i.e., if the value is

true, the last known state was good. We initialize the c01 and c11 to be 1 and the

others to be 0. Now, every time a packet is transmitted (or retransmitted), the

algorithm waits for a certain period of time to receive the acknowledgment (ACK).
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If received, the state of the link is set to be good (‘1’) otherwise it is set to be

bad (‘0’), and then based on the last state, the respective counter is increased by

one. The counters may be reset after reaching a maximum value, to keep the ETX

estimates fresh. In our experiments, we have not done this as it did not appear to

affect the performance.

Now, based on the counters, the ETX is calculated (it can be shown that this

corresponds to a maximum likelihood estimate of the underlying Markov Chain

parameters) as follows:

ETXij =


c00+c01
c01

if last State = 0

c10+c11
c11

if last State = 1

(6.13)

All the results presented in this study are based on this new, more justifiable

method of ETX calculation, which we apply to both BCP and HDCP for a fair

comparison.

6.2.2.5 Link Switching

In this study, we propose an enhancement of HDCP by introducing link switching.

The main concept of link switching is to maintain an ordered set of best (in terms

of the weights) K neighbors (K can be any positive integer) at each node. When a

packet is sent, it is first sent to the first neighbor on this list. If the transmission

fails, the retransmission attempt is made immediately to the next neighbor in the

133



list and so on. If the list is exhausted during retransmissions, the process restarts

again from the first neighbor in the list. A node should fulfill some selection criterion

to be included in the list such as the link weight should be within some threshold of

the best link. In our experiments, we set a threshold on the ETX and weight i.e.,

if a positively weighted link’s ETX is no worse than the best link’s ETX + 1, we

add that link to the list. In section 6.4.2, we present a practical experiment based

analysis of the performance improvement as a result of this change. However, we

introduce this switching in HDCP only because we empirically found that it does

not help to improve the performance of BCP. Note that the concept of link switching

is not part of the existing BCP and CTP implementations.

6.3 Implementation Details

Similar to any data collection routing protocol, a number of common routing pa-

rameters need to be set properly in the real implementation of HDCP (in our case

in the Contiki OS implementation) such as maximum queue size and the maximum

number of retransmissions. In this section, we discuss the choices of such parame-

ters and the reason behind them in details. First of all, we set the value of µij(n)

in Eqn. (6.2) to be 1 as a node cannot send more than one packet simultaneously.
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6.3.1 Retransmission

Retransmission is very crucial for the performance of any wireless network. For

effective retransmission, the parameters such as retransmission timeout and maxi-

mum number of retransmissions have to be properly chosen. Retransmission is also

directly related to the acknowledgment mechanism and the choice of ARQ. Since

the choice of ARQ affects the HDCP, the BCP, and the CTP algorithms equally, we

have implemented a simple Stop and Wait ARQ mechanism where a node can send

only one packet at a time and wait for its acknowledgment before moving to the

next packet. If the acknowledgment is not received within a certain time, commonly

referred as retransmission timeout, the node retransmits the same packet. Now, the

value of this retransmission timeout directly affects the goodput of the system and

needs to be properly chosen. Note that, the ARQ mechanism is employed on top

of the existing hardware level acknowledgment mechanism that tries a maximum

of 3 times to properly transfer the packet to the next hop in case of unicast trans-

missions (e.g., software acknowledgments). We do not remove the hardware level

acknowledgment (One key feature of the CTP algorithm) for a fair comparison as

well as to avoid the unreliability issues in pure software acknowledgments.

In our experiments, the transmission and propagation time for a packet is in

the order of tens of milliseconds. It would then perhaps be expected that the best

setting for the retransmission should be on the order of around 10ms or so. Never-

theless, we empirically found that it is best to set the timeout for retransmitting a
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lost packet to be chosen randomly between 10 to 200 ms. We believe that this large

range is needed because of the link coherence time in our testbed which is located

in a busy office building environment. For instance, in [159], it is indicated that

the coherence time for IEEE 802.15.4 radios can be about 175ms. Retransmitting

a lost packet quicker than the coherence time runs a higher risk of seeing another

packet loss. Furthermore, we use CSMA/CA as the link access protocol, which also

introduces some delay.

The maximum number of retransmission attempts is set to 5 based on the

original BCP code, which we empirically observed to perform well on our testbed.

After five retransmission attempts, if a packet is not acknowledged, the node will

drop it and move to the next packet.

6.3.2 Retry

Whenever a node generates or receives a packet, it tries to send it immediately

(after about 4 − 5 ms) if no other packet is being transmitted or waiting in the

queue. However, when the node wants to transmit the packet, there might not be

any suitable neighbor (in terms of having a positive weight) to forward the packet.

In that case, the node needs to decide how much time should it wait before retrying.

We refer to this wait time as the Retry time. One viable option is to constantly keep

trying which is not efficient in terms of energy consumption due to radio wake times.

Also once this situation happens, it might take a while to have a good neighbor.
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In this work, we set the retry time to be chosen randomly between 50ms to 100ms.

The intuition behind choosing this value is again the transmission time for a packet

being in the order of tens of milliseconds. Based on our experiments, we have

also observed that the typical packet transfer time (the time duration between the

transmission and reception of a packet) is ≈ 10ms. Therefore, by choosing a value

between 50ms and 100ms, we give the neighboring nodes enough time to potentially

transfer several packets which is likely to be enough to create a positive weight.

6.3.3 Queue Buffer

In practical low power low memory devices, the possible queue buffer allocations

are severely restricted. We fixed the maximum queue size to be 25 as this is the

highest possible number of queue buffer that our device can accommodate alongside

other required memories. Along with this buffer, there also exists a small memory

allocated to store only the recent packet for the retransmission purpose.

6.3.4 Beacon Timer

Beaconing is a very important part of the practical implementation of both HDCP

and BCP. When a node has nothing to send for a long time, beacons are sent

periodically, so that the neighboring nodes can keep their Backpressure database

updated. Also, beaconing is mandatory for a sink node since it has nothing to send.

Therefore we implement two different beaconing rates in our system. The first type
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of beaconing is for source nodes and the period for that is around 5 seconds. The

second type of beacons, which we refer to as the fast beacons, are used by the sink

nodes and the period for that beacon is around 2 seconds. These values are chosen

based on the original BCP code.

6.3.5 Inbound Packet Filtering

Inbound packet filtering is very important to improve the performance of both

HDCP and BCP in the presence of retransmissions. If no filtering is used, a node

might receive multiple copies of the same packet due to retransmissions. Therefore

the node might have multiple copies of the same packet stored in the buffer simul-

taneously, which is not efficient. To avoid this kind of situations, we implement an

inbound packet filter to drop any duplicate packets after sending proper acknowl-

edgments. In our implementation, each node maintains a history (packet source

information and the original sequence number) of 25 most recent packets received

by the node. We choose this number to match the queue buffer size. Every time a

node receives a packet, it checks the history, performs the necessary action such as

packet drop or store, and updates the history.

Further, to prevent packet looping, we implement a TTL counter which decre-

ments at each hop. In our experiments, sources set the initial TTL for each packet

conservatively to 10 (the maximum hop distance from any node to the sink in our

testbed is only 3).
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6.3.6 End to End Delay Calculations

For calculating end to end delay of each packet, we maintain a separate field called

HDCPDelay in the HDCP header, initialized with a value of 0. At the source

node, the packet is timestamped at the generation (Say, Asource) and just before

departure (Say, Dsource), and the value HDCPDelay field is set to be (Dsource −

Asource). Similarly, we time-stamp the packet at each intermediate node, Ik: upon

arrival (AIk) and just before departure (DIk); and add the time difference with the

value of HDCPDelay, i.e., HDCPDelay = HDCPDelay + (DIk − AIk). Thus, the

value of the field HDCPDelay upon arrival on the sink denotes the end to end delay

suffered by that packet. For illustration, assume that the travel path of a packet is

source→ I1 → · · · → IM → sink, where AI1 , · · · , AIM are the arrival times of the

packet at the intermediate nodes, and DI1 , · · · , DIM are the respective departure

times. Then the end to end delay is:
∑i=M

i=1 |DIi − AIi | + |DSource − Asource|. Note

that, we do not add the propagation delays as the value of propagation delays are

negligible compared to the queuing delay (which we measure) in our testbed setup.

6.3.7 Experimental Setup

To analyze the performance of HDCP in a real network and compare it with BCP

and CTP, we have implemented the HDCP and the BCP algorithms on Contiki OS

and used the CTP implementation available with the Contiki OS. We perform a set

of evaluation experiments on an indoor wireless network testbed called Tutornet
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[160] with forty-five IEEE 802.15.4-based Tmote-sky nodes distributed over a floor

with roughly 80, 000 sq.ft of an area. This testbed is also available for administered

public use for approved research purposes including benchmarking protocols. The

network topology is presented in Fig. 6.1 where the marked node is the sink and

the rest of the nodes are the source nodes and the furthest node is three hops away

from the sink. We use the channel number 26 with Tmote sky power level 31 for

this purpose. The number of neighbors to each node varies from 19 to 35 with an

average of 29. Nonetheless, typically only about 7-8 of the neighbors are connected

via good links (ETX ≈ 1). Thus the topology is very diverse with a considerable

number of different paths between any two nodes in the network. On the negative

side, a considerable amount of interference exists among the nodes, which limits

the bandwidth. The data packets in our experiments are all 26 Bytes in size.

Figure 6.1: Real Experiment Testbed Topology
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All the experiments are performed on weekdays during daytime with lots of

moving people and physical objects around. Each experiment is performed for 35

min: the network settles down during the first 5 min and the data is collected

during the next 30 min. Each experiment is repeated at least 10 times to improve

the confidence levels. Note that, we discuss the experimental setup for low power

stack and for node failures in Sections 6.4.5 and 6.4.7, respectively.

We evaluate HDCP’s performance in terms of different values of β and different

packet generation rates. We select the value of V to be 2 for both BCP and HDCP

which has been empirically determined to be an efficient operating point for BCP

in the original BCP paper (which we could also verify in our own experiments).4

6.4 Real Testbed Experiment Results and

Analysis

In this section, we evaluate the HDCP protocol under different configurations (β

values) and also compare them with LIFO BCP with virtual queue implementation

and CTP.

4The source codes of these experiments are publicly available at https://github.com/

ANRGUSC/HDCP.
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6.4.1 Variation of the β Parameter

We perform a set of practical experiments on the testbed with different values of

β and packet generation rates of 1 packet per 4 seconds per source (i.e., 0.25 PPS)

as well as 1 packet per 2 seconds (0.5 PPS). The difference in performance is not

prominent between the two source rates. Thus, we present the results only for the

higher rate of 0.5 PPS in this section.

The goodput of each source node is defined to be the number of packets received

by the sink from it over a one-second interval. For visual clarity, all the plots

presented in this section are sorted in terms of the goodput of the individual nodes

for the experiment with β = 0. The end to end delay calculation for each packet is

performed by adding up all the queuing and processing delays in all intermediate

nodes, as discussed in Section 6.3.6. This ignores the propagation times which in

any case are negligible compared to the processing delays.

First, we analyze the goodput characteristics of HDCP for different choices of

β. In Fig. 6.2a, we compare the goodput of each of the forty-four nodes for six

different choices of β. Figure 6.2a clearly shows that the goodput for β = 1 and 0.8

are significantly better than the other choices of β. It also demonstrates that β = 0

results in a gradual decrease in the goodput to sink where only a few nodes are

able to reach the maximum possible rate. Figure 6.2a also shows that the choice of

β ∈ {0, 0.2, 0.4, 0.6} does not significantly affect the goodput performance. Based

on these observations, we hypothesize that the goodput performance of the network
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is mostly dependent on the ETX of the path and, therefore, for higher β values the

goodput performance metrics are better. Figure 6.2c, which shows that the average

path costs for β ∈ {0.8, 1} in terms of ETX for individual sources are significantly

less than the average path costs for other choices of β, validates this hypothesis. In

Fig. 6.2c, we also analyze the average hop counts observed by the packets. It shows

a similar pattern as the path costs since total ETX of the path is proportional to

the number of hops traversed by the packet.

In Fig. 6.2d (Bottom), we analyze the variation in the average end-to-end delay

suffered by the packets generated from individual nodes for different values of β.

It shows that the average delay performance for β = 1 is the best among different

choices of β while any other choice of β results in a worse delay performance.

Similar statistics are seen in Fig. 6.2d (Top) in terms of the average queue sizes for

individual nodes. This Fig. 6.2d demonstrates that for β = 1 the average queue-

sizes are almost three to four times smaller than that of the average queue sizes

for β ∈ {0, 0.2, 0.4, 0.6}. We also plot the delay CDF in Fig. 6.2b for the packets

generated from mote 38 in the testbed which is the mote farthest from the sink. It

also shows that β = 1 is best in terms of end-to-end delay.

Summarizing all these results, we can say that HDCP performs really well if the

value of β is close to 1. For lower values of β, we find the performance does not

differ by too much from the performance when β = 0 (the reason for this is further

discussed in section 6.5). Therefore, we only consider HDCP with β = 1 and β = 0
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(the latter as a baseline scheme, which does not take into account ETX) for the

rest of the study.
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Figure 6.2: Performance Plots of HDCP Implementation for 0.5 PPS with Different
Values of β: (a) Average Goodput to Sink (b) End-to-End Delay CDF Plot for
Mote 38 (c) Average ETX per Packet (Top) and Average Hop Count (Bottom) (d)
Average End-to-End Delay (Bottom) and Average Queue Size for Each Node (Top)
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6.4.2 Modified HDCP vs Unmodified HDCP

In this section, we present a comparison of an HDCP implementation based on

the original weighing model suggested by the theory (Eqn. (6.7)) with our HDCP

implementation where the link weight model is modified as in (6.12) as well as

with our proposed link switching approach. For this purpose, we perform a set

of experiments with both versions of HDCP for a fixed value of β = 1 and fixed

packet generation rate of 0.25 PPS i.e., 1 packet per 4 seconds. Note that, for visual

clarity, all the plots presented in this section are sorted in terms of the goodputs

for unmodified HDCP implementation.

In Fig. 6.3a, we demonstrate that without the modifications we have proposed,

the goodput performance of HDCP suffers significantly. This is mostly due to the

selection of links with higher ETX as well as lack of proper queue gradient towards

the sink, as discussed in Section 6.2.2.1. This is further verified by the Fig. 6.3b

which clearly shows that the average path costs in terms of ETX for unmodified

HDCP are very high compared to our HDCP implementation.

Next, we compare the performance of unmodified and modified HDCP in terms

of average end to end delay as well as average queue size of individual nodes in

Fig. 6.3c. It shows that the delay performance of unmodified HDCP is worse than

modified HDCP for half of the nodes while it is better for the rest half of the nodes.

Thus, on average, the modification does not attribute to any delay improvements.

On the other hand, it is also clear from the Fig. 6.3c that there exists a steady
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Figure 6.3: Performance Comparison between Modified and Unmodified HDCP
Implementation with β = 1 for 0.25 PPS: (a) Average Goodput (b) Average ETX
per Packet (Top) and Average Hop Count (Bottom) (c) Average End-to-End Delay
(Top) and Average Queue Size (Bottom)

queue gradient in modified HDCP in contrary to the case of unmodified HDCP,

where most of the nodes have queue size of 1 thereby lacking a proper queue gradient

towards the sink. This also validates our justification for the modification of weights
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in HDCP as indicated in Section 6.2.2.1. Thus, overall we improve the performance

of HDCP by slightly compromising the average queue sizes.

6.4.3 Performance Comparison with BCP and CTP for Fixed

Packet Generation Rate

In this section, we compare the performance of HDCP with the performance of

the BCP protocol and the CTP protocol for the fixed packet generation rate of

0.5 PPS, i.e., 1 packet per 2 seconds. Note that, for simplicity of presentation, all

the plots presented in this section are sorted in terms of the goodputs for the BCP

algorithm.

In Fig. 6.4a, we plot the goodputs for CTP, BCP and HDCP with β = 0 and 1,

respectively. We observe that HDCP with β = 1 outperforms the CTP algorithm

in terms of goodput while CTP outperforms HDCP for β = 0. However, BCP and

HDCP with β = 1 perform almost identically. For β = 0, the weights of the links

are fully determined by the queue differentials and it does not depend on ETX at

all, resulting in bad performance. For CTP, a node relies on a single periodically

calculated path to sink and does not take advantage of multiple available paths

to sink thereby compromising the goodput for high packet generation rate such

as 0.5 PPS. On the other hand, BCP and HDCP with β = 1 focus on reducing

the total ETX cost of a source to sink path while not being restricted to a single

pre-calculated path. Thus, the BCP and the HDCP algorithm with β = 1 appear
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Figure 6.4: Comparison Plots between HDCP, BCP and CTP for 0.5 PPS: (a)
Average Goodput to Sink (b) Average ETX (Top), Average Hop Count to Sink
(Bottom) (c) Average End-to-End Delay (Top) and Average Queue Size (Bottom)

to be able to take advantage of the multiple paths available to the sink in order to

cope with high packet generation rates thereby improving the throughput region.

Similar to the goodput analysis, we present the average hop count and average

ETX of the entire path observed by the packets generated from individual sources in
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Fig. 6.4b. It shows that, again, HDCP with β = 1 and BCP both slightly outperform

CTP on average whereas HDCP with β = 0 performs the worst. This is also justified

based on our discussion presented in the previous section. The performance of

HDCP with β = 1 and the performance of BCP are again almost same. Based

on these results, we hypothesize that the similarity between BCP and HDCP with

β = 1 is due to the similarity in their neighbor rankings, despite differences in the

structure of the weight expression. This is further explored in section 6.5.

We also compare the delay performance and queue size of HDCP with BCP

and CTP in Fig. 6.4c. Figure 6.4c shows that the delay performance of HDCP for

β = 1 is significantly better than HDCP with β = 0. However, based on Fig. 6.4c,

the delay performance for BCP is almost same as HDCP with β = 1 while both

of them outperforms CTP. The similarity between BCP and HDCP with β = 1

is justified based on the previous results. In Fig. 6.4c, we also demonstrate that

the average queue size of HDCP with β = 1 is significantly low compared to BCP

and HDCP with β = 0. The queue size of CTP seems to be the lowest for some

nodes, however, we believe this is misleading as CTP experiences the most packet

drops among the various protocols at this offered load. The packet drops in CTP

occur partly due to retransmission packet drops caused by higher intra-network

interference (reflected in the higher ETX and higher delay values), and partly due

to some other parameters in its implementation such as forwarding packet lifetime

and an in-built congestion control. However, for any higher packet generation rate,
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we observe that the queue size for CTP increases rapidly (resulting in even more

losses) as does its delay.

6.4.4 Varying Packet Generation Rate

In this section, we present and analyze the effects of the packet generation/source

rates on the performance of HDCP and compare it with the performance of the BCP

and CTP algorithms. We performed a set of experiments with six different packet

generation rates: 1/12 PPS (i.e., 1 packet per 12 seconds), 1/8 PPS, 1/4 PPS, 1/2

PPS, 4/5 PPS, and 1 PPS. In Fig. 6.5a, we present the goodput variation due to the

change in packet generation rate for HDCP with β = 0 and 1 as well as the goodput

variations of the BCP and the CTP algorithms. It is clear from Fig. 6.5a that for

lower packet generation/source rates, HDCP performs almost similar to the BCP

and CTP algorithm in terms of goodput to sink. But, as we increase the offered load,

HDCP and BCP gradually outperform the CTP algorithm. In our experiments,

HDCP outperforms CTP in terms of goodput for packet generation rates higher

than 1 packet per 4 seconds. From the Fig. 6.5a, we can estimate that the full

throughput region (the maximum offered load at which the protocol is able to match

the ideal curve) for HDCP is about 60 to 100% higher than that for CTP in this

particular testbed and topology (of course the relative performance improvement is

certainly likely to depend on the network topology.) Another thing to notice that,

the average goodput for β = 1 is always higher than β = 0 which agrees with our
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earlier findings and arguments concerning the inefficiencies introduced by ignoring

the ETX costs of links. Yet again, the performance of BCP closely follows the

performance of HDCP with β = 1 which is, again, due to the similarity in their

neighbor rankings in terms of the weights. This is further explained in section 6.5.
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Next, we investigate the effects of increasing packet generation rates on the

average path costs in terms of ETX and the average number of hops traversed by

the packets. We plot the average ETX and average hop counts due to different

source rates for HDCP, BCP and CTP in Fig. 6.5c. It is observable from Fig. 6.5c

that for any packet generation rate overall path cost for HDCP with β = 1 is

comparable to BCP while CTP outperforms both for packet generation rate lower

than 0.25PPS and converges with them for higher rates. Moreover, the average

path cost for HDCP with β = 0 is higher than β = 1 which is justified by our

discussion in the previous section. Similar statistics are available from the plot

of average numbers of hops encountered by each packet due to its direct relation

with the overall path ETX. The similarity between HDCP with β = 1 and BCP is,

again, justified based on our earlier discussions. The apparent ‘good’ performance

of CTP is due to its increasing incapability of sending packets with long path costs

to the sink as it encounters congestion drops.

Lastly, we analyze the effect of packet generation rate on the average delay in

Fig. 6.5b. Although CTP and BCP outperform HDCP for source rates lower than

0.25PPS by a small margin, Fig. 6.5b demonstrates the superiority of the HDCP

for β = 1 in overall delay performance as it continues to guarantee lower delay for

higher packet generation rates. Another interesting fact to notice is that for BCP

and HDCP, the delay increases steadily with packet generation rate whereas the

delay for CTP increases rapidly with packet generation rate. This is likely because
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BCP and HDCP can take advantage of multiple paths to sink whereas the CTP

relies on only one path. Therefore, CTP reaches congestion earlier than BCP and

HDCP which results in the rapid increase in delay. Again, the similarity between

BCP and HDCP with β = 1 is due to the similarity in the neighbor ranking in

terms of the weights.

To summarize, our experiments lead us to conclude that optimized combinations

of queue-awareness and ETX (implemented in BCP and HDCP with β = 1) provide

the best choice for routing, better than routing based on ETX alone (CTP), which

in turn performs better than queue-aware routing alone (HDCP with β = 0).

6.4.5 Low Power Communication Stack Based Experiments
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In order to verify the performance of HDCP on a low power communication

stack, we performed a set of experiments with 35 sources and a sink (first 36 nodes

of the testbed). For these experiments, we used CX-MAC protocol, a version of

X-MAC [161] that is provided in Contiki, with a duty cycle of 5% for HDCP, BCP,

and CTP. However, the choice of CX-MAC protocol over the other protocols is just

a matter of the availability of Contiki implementation. Furthermore, since we are

using a duty cycle, we also need to cut-back our source rates to a very low rate. For

the presented set of experiments, we used a packet generation rate of 1 packet per

60 seconds (i.e., 1/60 PPS). We present the results in Fig. 6.6. Fig. 6.6 shows that

the HDCP protocol with β = 1 performs well in a low power communication stack,

at a very low duty cycle setting where even CTP shows some deterioration in the

fairness of goodput. However, in this setting the performance of the baseline with

β = 0 is much worse, leading us to conclude that it is a very poor setting indeed.

Now, in order to estimate the actual energy consumptions, we record the different

energy consumption components using the Contiki PowerTrace tool (in terms of

the percentage of time spent in different radio phases: Transmit, Listen/receive).

Based on our traces, in HDCP with 5% duty cycle, the radio of each node is on

for 5.92% of the total execution time, out of which the node is transmitting and

receiving approximately 0.65% and 5.27% of the total execution time, respectively.

Now, to get the actual energy consumption, one can use the current and voltage

ratings from the specifications of the devices used. For example, in Tmote-sky the
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rated voltage of operation is approx 3.3V and the average current consumptions are

17.4mA and 19.7mA for radio transmission and radio reception, respectively. This

results in approximately 113.78mJ energy consumption in each Tmote-Sky for the

experiment period of 30 minutes.

6.4.6 External Interference

In this section, we evaluate the performance of the HDCP protocol with the opti-

mized β = 1 in the presence of external interference and compare it with both BCP

and CTP. This is necessary because the 802.15.4 radios share the frequency band

with WiFi, Bluetooth, and other Zigbee radios and as a result of their performance

often suffers from severe interference. To emulate such scenarios, we performed a

set of experiments with forty sources and a single sink (Node 1) while four nodes

are used as interference sources on channel 26. The interfering nodes are inactive

for the first five minutes of the experiment, periodically transmit for next fifteen

minutes, and become inactive again for the last five minutes of the experiment.

During the on period, each of the interfering nodes transmits 110 Byte packets at a

rate of 100PPS for 15 seconds and then does not transmit anything for the next 15

seconds, and so on. Furthermore, we reduced the power level of all 41 nodes from

level 31 to level 15 whereas the interfering nodes were kept at level 31, in order

to intensify the effect of interference. The outcome of this set of experiments is

presented in Fig. 6.7a that plots the delivery percentage of the packets over a series
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of 30 seconds time window for HDCP with β = 1, BCP and CTP. It demonstrates

that while CTP performance significantly suffers from the interference, the HDCP

protocol maintains its good packet delivery ratio, similar to BCP.
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Figure 6.7: Thirty Second Windowed Average Sourced Packet Delivery Ratio for:
(a) Synthetically Generated Interfering 802.15.4 Channel 26 Traffic (b) Real Inter-
ference Scenario on 802.15.4 Channel 13

The above-mentioned settings are used to stay consistent with the interference

settings presented in the original BCP paper[102]. However, it is well known that

the simple Gilbert-Eliot model used for ETX estimation might work perfectly with

some specific synthetic interference models and might fail in realistic interference

scenarios. In order to explore the performance of the HDCP algorithm, in presence

of real interference, we performed a set of experiments with 44 source nodes and 1

sink node, running on channel 13 of the 802.15.4 standard which is known to be one

of the most interfered channels. We also compare the performance of HDCP based

on the Gilbert-Eliot (GE) ETX model with the performance of BCP with the GE
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model as well as with HDCP based on the ETX model used in the original BCP

paper [102]. The results presented in Fig. 6.7b clearly demonstrate that even in

the presence of constant real interference, the HDCP algorithm with Gilbert-Eliot

ETX model performs comparable to the BCP algorithm and the HDCP algorithm

with the basic ETX model presented in [102], while outperforms the CTP algo-

rithm. Furthermore, both Figs. 6.7a and 6.7b show that the BCP and the HDCP

algorithms can achieve approx 85% delivery ratio in presence of interference while

the CTP achieves approx 70%.

6.4.7 Node Failures

In this section, we evaluate the performance of the HDCP protocol with the opti-

mized β = 1 in the presence of node failures/joins and compare it with both BCP

and CTP. This is necessary because node failures and node joins are very common

events in an RWN. To emulate such scenarios, we performed a set of experiments

with twenty sources, single sink, and twenty-five forwarding nodes, i.e., total forty-

six nodes in the network. All nodes were set to transmit at the maximum power

level, i.e., level 31 and on channel 26. In our experiments, we randomly turned

off four of the forwarding nodes (i.e., ≈ 10% nodes) after five minutes from the

beginning and then turn them back on after ten minutes from the beginning. Each
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source node was set to transmit at 1/2 PPS. A sample outcome of this set of exper-

iments is presented in Fig. 6.8 which plots the delivery percentage of the packets

over a series of 30 seconds time windows for HDCP with β = 1, BCP, and CTP.
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Figure 6.8: Thirty Second Windowed Average Sourced Packet Delivery Ratio for
10% Node Failures

Figure 6.8 demonstrates that CTP performance significantly suffers after the

node failures and could not recover from that due to very high packet generation

rate and the reliance on a single predetermined path from each source to the sink.

On the other hand, the performance of both the HDCP protocol and the BCP

protocol are unaffected by the node failure/join events. This pertains to the fact

that both HDCP and BCP do not rely on a single path and, thus, able to take

advantage of the alternate paths in the network, after the node failures. This

validates that queue-aware routing algorithms such as BCP and HDCP perform well

in presence of high node dynamics while the predetermined route based algorithms

such as CTP suffer after node failures. The similarity in performance between BCP
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and HDCP is again due to the similarity in the neighbor rankings in terms of the

weights (explained in Section 6.5).

6.5 Similarity Analysis Between HDCP and BCP

In this section, we analyze the BCP and the HDCP algorithms to identify the

reasons behind the similarity in their performance. The performance of both the

BCP and the HDCP depend on the rankings of the neighbors (based on the link

weighing functions) of a node, which in turn translates to the selection of routing

paths to sink. From a theoretical standpoint, the performance of HDCP and BCP

will be different in a network if their respective rankings of the neighbors under

same queue size conditions are different. Conversely, we hypothesize that the similar

rankings of neighbors for both the HDCP and the BCP protocol will result in similar

performance.

6.5.1 Theoretical Analysis

In order to analyze the scenarios that will result in different or similar rankings

of neighbors for HDCP and BCP, we compare the simplified weighing functions of

BCP and HDCP with β = 1, which can be written as follows:

wbcpij (n) = qij(n)− 2.ETXij(n)

whdcpij (n) =
qij(n)− ETXij(n)

ETXij(n)

(6.14)
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Figure 6.9: A Simple Topology For Ranking Similarity Analysis Between HDCP
and BCP

provided that V = 2 and
qij(n)

2ETXij(n)
≥ 1, i.e., the links have non zero weights

according to both BCP and HDCP weighing schemes. First of all, we try to identify

the range of the possible network configurations that will result in different rankings

for HDCP and BCP. For this purpose, we analyze a toy topology illustrated in

Fig. 6.9. Assume that the ETX31 and ETX32 are 1 and e ≥ 1, respectively. Now,

the weights of the respective links according to BCP will be:

wBCP31 = q31 − 2 and wBCP32 = q32 − 2e (6.15)

Similarly, the weights for the links according to the HDCP rule for β = 1 will be

(provided that q31 ≥ 2 and q32 ≥ 2e):

wHDCP31 = q31 − 1 and wHDCP32 =
q32

e
− 1 (6.16)

Now,

wBCP31 > wBCP32 if e > (q32 − q31)/2 + 1

wHDCP31 > wHDCP32 if e >
q32

q31

(6.17)
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Thus, if q32
q31

< e < (q32 − q31)/2 + 1, the rankings of the outgoing links of node

3 are different, while the rankings are the same for all other values of e. As an

example, say, q31 = 4 and q32 = 6, then only for 3/2 < e < 2, the rankings are

different. However, according to Eqn. (6.14) as well as Eqn. (6.17), for ETX = 1

both schemes will put similar weights on the links but with different negative offsets

(2 for BCP and 1 for HDCP). Thus, the steady state performance will be same for

both but with slightly lesser queue sizes in HDCP, which is also verified by our

experiments. To verify whether the presence of too many perfect links is one of the

reasons behind the similar performance of HDCP and BCP, we plot the CDF of

the ETX traces collected from all the nodes during a real collection experiment, in

Fig. 6.10a. In Fig. 6.10b, we plot the CDF of the average link costs (average ETX

per link) of the shortest paths between every possible pair of nodes in the testbed.

Figure 6.10a illustrates that a significant number (≈ 40%) of links are perfect links

(ETX ≈ 1) while Fig. 6.10b implies that approximate 40% of the shortest paths

consists of only perfect links (ETX ≈ 1). Furthermore, approximate 60% of the

shortest paths in the network between any possible node pair consists of links with

average ETX of 1.25, as shown in Fig. 6.10b. All these statistics suggest similarity

in the rankings of neighbors as well as the similarity in performance for the BCP and

the HDCP algorithms. In summary, since we do not observe much of a difference in

the performance of the HDCP and the BCP algorithms, we conjecture that in our
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experimental setup, the probabilities for different rankings of the neighbors (more

specifically, top 2 neighbors) are very low.
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Figure 6.10: (a) Empirical CDF of the Link ETX Values for Our Testbed (b)
Empirical CDF of the Average ETX per Link for the Shortest Paths Between Any
Pair of Nodes

Next, in order to verify whether similarity in neighbors’ ranking will result in

similar performance, we perform a theoretical analysis of the steady-state queue

gradients for both HDCP and BCP. The steady-state queue sizes depend on the

smallest cost path to the sink. Say, for a node i, there exists k ∈ {1, 2, · · · , K}

possible paths and each path consists of one or more links lk. Then the steady state

queue size for node i in BCP will be wbcpi = mink∈{1,2,··· ,K}

[∑lk
j=1 2 ∗ ETXk,j

]
, while

in HDCP the steady state queue size will be whdcpi = mink∈{1,2,··· ,K}

[∑lk
j=1ETXk,j

]
,

where ETXk,j represents the ETX of the jth link of the kth path from node i to the

sink. Thus, we can say that the steady-state path to sink for each node in HDCP

is same as the BCP. Now, if the packet generation rate is low, every packet will
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always follow the steady state gradient and, thereby, follow the same path leading

to similar performance. Now, if the packet generation rate is high, in the worst

case we will have a batch arrival of packets at some node, say i. Let us assume that

when node i disseminate the batch arrival packets, all the neighboring nodes of i

are unchanged, i.e., no packet arrival (except the node i) or departure takes place.

In this situation, node i will keep on transmitting to the neighbor that is part of

the best path to sink, until a point when the weight for the respective link becomes

worse than the 2nd best link. In the following, we analyze at what point, i.e., after

how many packet transmissions, node i will switch to the second best link.

• BCP: Node i prefers a neighbor node m over another neighbor node n, iff:

qi − qm − 2× etxim > qi − qn − 2× etxin (6.18)

where qi, qm, qn represent the queue sizes at node i, m, and n, respectively

and etxim, etxin represents the etx of the links im and in, respectively. Now,

say after x number of transmissions, the 2nd link is considered:

=⇒ (qi − x)− (qm + x)− 2× etxim = (qi − x)− qn − 2× etxin

=⇒ x = qn − qm + 2× (etxin − etxim)

(6.19)

Now, WLOG assume that the node m is part of the best path to the sink from

node i, while node n is part of the second best path. Then, etxim ≈ etxin =⇒
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x ≈ qn − qm. If etxim < etxin, x = qn − qm + 2 × (etxin − etxim) > qn − qm.

On the other hand if etxim > etxin implies (qm < qn) for feasibility of the

rankings in focus, which implies x = qn−qm−2× (etxim−etxin) ≤ (qn−qm).

• HDCP: Node i prefers a neighbor node m over another neighbor node n, iff:

qi − qm
etxim

>
qi − qn
etxin

(6.20)

where qi, qm, qn represent the queue sizes at node i, m, and n, respectively,

and etxim, etxin represent the etx of the links im and in, respectively. Now,

say after x number of transmissions, the 2nd link is considered:

=⇒ (qi − x)− (qm + x)

etxim
=

(qi − x)− qn
etxin

=⇒ x(2− etxim
etxin

) = qi × (1− etxim
etxin

)− qm + qn ×
etxim
etxin

=⇒ x = qi ×
(1− etxim

etxin
)

(2− etxim
etxin

)
− qm ×

(1− etxim
etxin

)

(2− etxim
etxin

)
− qm ×

( etxim
etxin

)

(2− etxim
etxin

)

+ qn ×
etxim
etxin

(2− etxim
etxin

)

=⇒ x =
1

2
× (1− z)× (qi − qm) + z× (qn − qm) where z =

etxim
etxin

(2− etxim
etxin

)

(6.21)

Now, WLOG assume that the node m is part of the best path to the sink

while node n is the second best path. Similar to BCP, etxim ≈ etxin =⇒ x ≈

qn − qm. It also suggest that in HDCP, the number of transmissions before
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switching depends on a weighted sum of the queue differential of the best link

(qi − qm) and the queue differential of the 2nd best and the best neighbor

(qn − qm), where the weights depend on the ratio ( etxim
etxin

). If etxim < etxin,

0.5 ≤ z ≤ 1 that implies more weight on (qn − qm) thereby increasing the

chances of switching as qi ≥ max{qm, qn} which also implies x ≥ 1+z
2

(qn −

qm) ≥ (qn − qm). On the other hand, etxim > etxin =⇒ (qm < qn) for

feasibility of the rankings in focus and z > 1 that suggests x = z × (qn −

qm)− z−1
2
× (qi − qm) ≤ 1+z

2
(qn − qm).

The above analysis suggests that if the outgoing best and 2nd best link of a node

have similar ETX, both BCP and HDCP will switch after exactly same number of

transmissions under same queue conditions. Even in other cases for any particular

network, the switching patterns are similar and just switches after a slightly different

number of transmissions, which is a function of (qn − qm). Therefore, the observed

performance of BCP and HDCP will be similar. However, this analysis is pertinent

to the fact that both HDCP and BCP have same rankings of the neighbors (at least

best two neighbors) which validates our hypothesis.

Based on the theoretical analysis, we conjecture that the similarity of perfor-

mance between HDCP and BCP in our testbed experiments is due to the similarity

of rankings of the neighbors in most of the nodes. To verify this conjecture, we

perform a Kendall Tau test of the ranking data collected from our real experiment

setup, as follows.
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6.5.2 Kendall’s Tau Test

In the previous sections, we observed that the optimized versions of BCP and HDCP

with β = 1 are very similar to each other in performance. We hypothesized that

this may be due to the similarity in the neighbor rankings for the two protocols. In

order to verify our hypothesis, we collected a set of routing table snapshots from

three representative nodes, located at one hop, two and three hop distance from the

sink, respectively, during a real collection experiment. These snapshots contain the

information about their neighbors such as backpressure and ETX information from

the real experiment. Based on those snapshot values, we calculated the Kendall’s

Tau distance between the neighbor rankings generated by the weight calculation in

BCP on one hand, and the neighbor rankings generated by the weight calculation

in HDCP for different values of β on the other, for all neighbors that have a positive

weight in at least one of the two protocols under comparison. Kendall’s Tau distance

between two rankings indicates the fraction of pairs that are ordered the same in

the two rankings. If it is 0, then the two rankings are identical. Higher values

indicate more different rankings.

We present the results in Fig. 6.11. It clearly shows that while there is a lack

of correlation between lower values of β, for β → 1 there is a strong correlation

between HDCP and BCP. This verifies our hypothesis and justifies the results shown

in this study.
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Figure 6.11: Variation of Kendall’s Tau Distance between HDCP and BCP Neigh-
bor Rankings for Different Values of β

Another noticeable fact is that for β ∈ [0, 0.6] the Kendall Tau distance with

respect to BCP remains almost the same. We performed additional Kendall’s Tau

correlation analysis between neighbor rankings of HDCP for every possible pair of

β ∈ {0, 0.2, 0.4, 0.6} and the average distance for each case was found to be less

than 0.1. This is the reason behind the similarity in performance of HDCP with

β ∈ {0, 0.2, 0.4, 0.6}.

6.6 Discussion

We have proposed and implemented a new data collection and routing protocol

for robotic wireless networks and wireless sensor networks called HDCP that is

the first practical realization of a theoretical algorithm called the Heat Diffusion

algorithm which is inspired by Thermodynamics. We have evaluated HDCP on a

real wireless network testbed. We have compared the performance of HDCP with
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two well-known protocols on this testbed: CTP and BCP. Based on the results, we

can conclude that HDCP with an optimized parameter setting of β = 1 performs

as well as BCP and outperforms CTP with respect to throughput performance,

interference resilience, and low power operation, while all three generally offer about

the same end-to-end delay on average in the full throughput region.

The equivalent performance of HDCP to the previously published BCP is a

somewhat surprising finding of this study. From a mathematical perspective, this

is not obvious as they employ quite different equations for the weight calculations

and indeed in our prior theoretical works, Heat Diffusion has been found to perform

better than Backpressure scheduling in some respects. But as we have shown, nev-

ertheless, the two protocol implementations provide very similar neighbor rankings

in a real network. We believe our finding also lends some support to the notion that

it may not be possible to get any higher performance in practice with a dynamic

routing protocol that takes into account both queue states and link quality.

In summary, HDCP is a well-designed routing protocol with a smaller end-

to-end delay that does not rely on precomputed routing paths yet provide better

or comparable performance to the existing alternatives. The delay and network

dynamics adaptability of the protocol makes it suitable for an RWN where the

control packets need to be fast and efficiently routed between the participating

devices to achieve the deployment objectives.
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Chapter 7

Unified Communication Protocol for Control and

Sensing in RWN

In this chapter, we present our fourth study on a low-power application layer com-

munication protocol with low bandwidth consumption for an RWN that abstracts

the notion of control and data transfer under a unified overlay networking.1 The

typical application contexts of an RWN imposes a heavy demand on the underlying

communication between the robotic agents in terms of efficiency, reliability, and

scalability. The robots inherently work under heavy power constraints which in

turn imposes energy consumption constraint on the communications hardware and

protocols as well. Another major factor related to the scalability of the network

is the limited communication bandwidth which leaves the supported number of

simultaneous wireless communications up to the design of the communication pro-

tocols and packet formats. Thus, the communication protocols in a dense network

1The material in this chapter is based in part on the work in [162].
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of wireless robots must be lightweight with low bandwidth requirements. However,

we have noticed a lack of such application layer communication protocols engineered

specifically for efficient control and data collection in a network of heterogeneous

robots.

In this study, we present the Robotic Overlay coMmunicAtioN prOtocol (RO-

MANO), a lightweight, application layer overlay communication protocol for a uni-

fied sensing and control abstraction of a network of heterogeneous robots mainly

consisting of low power, low-compute-capable robots. ROMANO is built to work in

conjunction with the well-known Message Queuing Telemetry Transport for Sensor

Nodes (MQTT-SN) protocol, a lightweight publish-subscribe communication proto-

col for the Internet of Things and makes use its concept of “topics” to designate the

addition and deletion of communication endpoints by changing the subscriptions

of topics at each device. We also develop a portable implementation of ROMANO

for low power IEEE 802.15.4 radios and deployed it on a small testbed of com-

mercially available, low-power, and low-compute-capable robots called Pololu 3pi

robots. Based on a thorough analysis of the protocol on the real testbed, as a

measure of throughput, we demonstrate that ROMANO can guarantee more than

a 99.5% message delivery ratio for a message generation rate up to 200 messages

per second. The single hop delays in ROMANO are as low as 20ms with linear

dependency on the number of robots connected. Lastly, as proof of concepts, we
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implement four different applications of ROMANO in a network of robots: (1) sim-

plified control of the robots, (2) seamless sharing of sensor data, (3) control of any

functions of a robot such as peer-to-peer radio transmission, and (4) communication

and control between multiple networks of robots over internet.

7.1 The Proposed ROMANO Protocol

We have discussed the basic concepts of a MQTT-SN communication in Section 2.4.

In this section, we discuss the details of ROMANO protocol as well as how RO-

MANO build on top of MQTT-SN.

From a pool of different types of MQTT-SN messages, the ROMANO utilizes

mainly the MQTT-SN Publish Messages. The typical format of an MQTT-SN

Publish message is presented in Table 2.1. ROMANO utilizes the variable length

“Data” field of a MQTT-SN Publish Message for sending ROMANO messages

between nodes and the TopicId field (containing the topic id value or short topic

name) for identifying communication endpoints.

7.1.1 Requirements:

At a minimum, ROMANO requires each end device/robot to run a MQTT-SN

client on a multi-threaded OS. Each of the devices needs to be connected to a

MQTT-SN broker/forwarder while the broker nodes are bridged together either

directly or over the internet. Furthermore, the broker device also runs a ROMANO
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server program. Each end device (robot or sensor node) needs to follow a standard

connection establishment/initialization phase to initiate ROMANO as follows.

• Set up a MQTT-SN connection to a MQTT-SN broker where the device’s

IPV6 address is used as the device identifier.

• Subscribe to a topic named after the last 8 characters of the device’s IPv6

address which we refer to as the ROMANO ID. For example, a device with

address fe80 :: 212 : 4b00 : abcd : 1234 subscribes to the topic “abcd1234”.2

The ROMANO ID can be used to communicate to a specific device.

• Publish the ROMANO ID on a predefined topic “init-info” and wait for a fixed

amount of time (2 seconds in our implementation) for an acknowledgment to

be published by the ROMANO server on the respective ROMANO ID topic.

If no acknowledgment is received on time, the node retries indefinitely.

• Subscribe to the topic “common” which ROMANO uses for broadcast com-

munication.

7.1.2 The ROMANO Protocol

Our proposed ROMANO protocol can be described as follows.

• According to the five-layered Internet model of networks, the ROMANO pro-

tocol falls under the application layer alongside the MQTT-SN protocol. More

2One can use the whole IPv6 address as the topic. However, ROMANO uses the last 8
characters to keep ROMANO ID small while accommodating up to 232 devices.
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Figure 7.1: (Left) The ROMANO Network Stack, (Right) ROMANO Data Types

specifically, the ROMANO and the MQTT-SN protocols form a nested, lay-

ered structure inside the application layer as presented in Fig. 7.1.

• ROMANO uses the MQTT-SN topics to define the communication endpoints.

Any publisher to a certain topic is the transmitter node while all the sub-

scribers of that topic are the receivers. Any node of a ROMANO network

can be a transmitter at any instance of time for any topic while the receiver

nodes need to subscribe first with the broker and remain connected. Thus,

ROMANO allows all types of communication: one-to-one (unicast), one-to-

many (multicast), one-to-all (broadcast), many-to-one, and many-to-many.
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• ROMANO uses the MQTT-SN data section for the overlay communication

where a complete ROMANO message is embedded in the MQTT-SN data

section.

• ROMANO has the feature of controlling the subscriptions of a node. One

of the ROMANO message types, MQTT Subscribe can instruct the receivers

to subscribe to a particular topic (say, ‘test-topic’) so that they can register

themselves as receivers of that topic (‘test-topic’).

• ROMANO also has the feature of instructing the receivers to publish certain

types of data (e.g. telemetry data) to certain topics (e.g. ‘telemetry’). This

feature can be used for active polling of sensor/control data for a specific

robot such as the leader.

• The ROMANO overlay protocol allows any node (e.g. robot or sensor) in

the network to control the movements of a robot via the same abstraction

regardless of whether they are either connected directly, connected via an ad

hoc network, or connected over the internet.

• ROMANO has an optional periodic ‘heartbeat’ messaging feature to notify its

presence to all the connected nodes, which can be used for neighbor discovery

or end-to-end reliable message transfer.
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7.1.3 Message Formats:

The communication in ROMANO follows certain message structures as described

in this section. The base messaging format in ROMANO is presented in Table 7.1.

The ROMANO data type field dictates the communication type. The default types

are presented in Fig. 7.1 (Right).

Table 7.1: ROMANO Message Format

ROMANO Data Type ROMANO MSG Length ROMANO Data
(1 octet) (1 octet) (1-253 octets)

The ROMANO MSG Length section denotes the length (say, k + 1 octets) of

the whole ROMANO message, and the ROMANO Data Section contains the data

of variable length. Each of the ROMANO message types (except type ROMANO

Connection Ack which only uses the Data Type and the Data length section) have

their own formats, summarized in Table 7.2. Most of the message formats are self-

explanatory except the ROMANO MQTT Publish Request message and Movement

Control message. In MQTT Publish Request messages, the MQTT Topic Length

field (say, m octets) marks the end of the Topic ID field (to publish data to) from

the beginning of the ROMANO message where the Topic ID field starts at the 3rd

octet. The ‘data to publish’ section in the Publish Request message defines the cus-

tom type of data to publish. The ROMANO movement control message can be used

to control different types of movements. We have also defined some basic move-

ment control message type listed in Table 7.3. One can define up to 216 different

movement control functions (using the allocated 2 octets) with custom arguments.
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In principle, entire sequences of useful movements could be encoded into a single

movement control message; for example, a semi-circular motion clockwise around

an obstacle, specified by a radius parameter. ROMANO outputs each movement

command to the built-in ROMANO control data mailbox queue (a structure made

available for both C and C++) which is serviced by the thread running a robot’s

movement controller. The implementation of a movement controller is still inde-

pendent of ROMANO, but controllers are required to retrieve commands from the

ROMANO control data mailbox.

7.1.4 ROMANO for Bootstrapping of Robots:

One key feature of ROMANO is that it is designed with the aim of easier inte-

gration of robots in a network as well as bootstrapping new devices with coherent

configurations. In a network of robots, due to many reasons such as the network

dynamics and failures, robots/devices might come and go. In such cases, whenever

a new device joins the network, it needs to be configured for consistency. In this

regard, ROMANO allows a plug and play type system where the robots joining the

network just need to run a ROMANO client with proper access to its resources such

as movement controller logic and state information. Now any robot or a human

connected to the network can use ROMANO to dynamically configure the robot

based on the network and application demands on the fly. This reduces the amount

of manual configuration required in a robot before its deployment. This feature has
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Table 7.2: ROMANO Message Formats

Message Format for Request Connected Nodes Info,
Heartbeat Message, and Connection Request

ROMANO Data Type MSG Length ROMANO ID
(octet 0) (1) (2 - 9)

Normal Data / Connected Nodes Info message Format

ROMANO Data Type MSG Length Data
(octet 0) (1) (2 - k)

MQTT SUB/UNSUB Control Message Format

ROMANO Data Type MSG Length Topic to subscribe to or unsub-
scribe from

(octet 0) (1) (2 - k)

MQTT PUB Request Message Format

ROMANO
Data Type

MSG
Length

MQTT Topic Length,
(m)

Topic ID Data to
Publish

(octet 0) (1) (2) (3 - m) ( m+1 - k)

Movement Control Message Format

ROMANO
Data Type

MSG
Length

Movement Control
Type

Movement Control
Data

(octet 0) (1) (2 - 3) (4 - k)

Sensor Data Message Format

ROMANO Data Type MSG Length Sensor Type Sensor Data
(octet 0) (1) (2 - 3) (4 - k)

Table 7.3: Movement Control Types

Movement Control Type Movement
Type Value Control Data

Move Front 0x0000 Distance
Move Back 0x0001 Distance
Move Left 0x0002 Distance

Move Right 0x0003 Distance
Rotate Left 0x0004 Angle

Rotate Right 0x0005 Angle
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been incorporated into our in-house wireless robotic network testbed called the IRIS

testbed for quick and easy bootstrapping of the entire testbed without the need to

manually reconfigure every time.

7.2 Real Implementation and Experimentation:

7.2.1 Core Implementation:

In this section, we present our real implementation of the proposed ROMANO pro-

tocol in a testbed of five cheap, low power, and commercially available robots called

Pololu 3pi [148]. A 3pi, illustrated in Fig. 7.2, also comes with an expansion board

that can accommodate an XBee form factor device for IEEE 802.15.4 communi-

cation and a mbed board. For communication, we use a commercially available

product for IoT called the OpenMote [139], and for the mbed device, we use the

LPC1768 model of mbed [140]. We choose this particular set of hardware due to

the following reasons. (1) These devices are compatible with each other and have

very low computation power, very small communication energy consumption, small

form factor, and also comparably low cost. (2) These devices form the base of our

in-house scalable, portable, cheap, open-source wireless robotic IoT testbed called

the IRIS testbed that is used for research on low power robotics with a major focus

on communication and networking.
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Figure 7.2: ROMANO Implementation Stack on Pololu 3pi

In this testbed, we implemented the ROMANO in a modular distributed man-

ner over a mbed and an OpenMote. The mbed device does not have a radio, but it

has more processing power and memory than the OpenMote. The OpenMote comes

with a radio but does not have enough General Purpose Input Output (GPIO) pins

and memory to act as the robot controller. Thus, we implemented ROMANO across

both devices with controllers on the mbed and the communication software stack

on the OpenMote with UART bridging data between the two. For reliable UART

communication, we have implemented a low power version of a reliable data transfer

protocol called the High-level Data Link Control (HDLC) [143]. Our stack imple-

mentation is illustrated in Fig. 7.2. For software development, we use a well-known

open source OS for IoT called RIOT-OS on the OpenMote and the open-source

real-time operating system MBED-OS 5 on the mbed. Note that, for implementing
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the ROMANO protocol, one device with both a radio and microcontroller is also

sufficient.

In our current implementation, the MQTT-SN broker is running on a Rasp-

berry Pi running Raspbian with an OpenMote connected via USB to act as the

802.15.4/6LoWPAN gateway device. All the 3pis are connected to the broker

as well as the internet via either a direct link or a multihop link (illustrated in

Fig. 7.3). For routing in the multihop network we use a well-known routing proto-

col for 802.15.4 networks called RPL [109]. We use IPv6 for addressing instead of

IPv4 due to its wide applicability in IoT systems as well as its compatibility with

existing IPv4 systems. The IEEE 802.15.4 standard operates on the same spectrum

as WiFi but with different communication channels and modulations. In the USA,

the IEEE 802.15.4 standard offers 16 different channels numbered from 11-26. We

performed the experiments using channel 26 of the IEEE 802.15.4 standard to avoid

external interference from WiFi networks.

7.2.2 Performance Analysis

With the experimental setup detailed in Section 7.2.1, we performed a set of ex-

periments to analyze the performance of the proposed ROMANO protocol. In

this section, we focus on three important communication/networking aspects in a

robotic network: scalability, end-to-end delay of communication, and throughput.
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Figure 7.3: Our Testbed Architecture for the ROMANO Experimentation

We performed a series of stress tests with the experimental setup to find the per-

formance boundaries of ROMANO. To test message delivery ratio, we ran a set of

experiments where the ROMANO server script publishes messages to the connected

robots via ROMANO for message generation rates of 1, 10, 20, 50, 75, 100, 200, 300,

400, and 500 Message(s) Per Second (MPS). For each rate, we ran 10 experiments,

each with 5000 messages. We find that the message delivery percentage is ≥ 99.5%

for a messaging rate of 200 MPS or less. For higher message generation rates the

testbed system fails after a while due to the radio buffer overflow (summarized in

Table 7.4). After careful investigation, we find that this buffer overflow is due to
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the radio hardware limitations and not due to the limitations of the ROMANO

protocol. This is further justified by the fact that, until the radio buffer overflows,

the message delivery ratio is ≈ 99.5%.

Table 7.4: Message Delivery Ratio for Different Message Generation Rates

MPS
Message Delivery Ratio

Comments
Minimum Maximum

100 99.9% 100% No Radio Buffer Failure
200 99.5% 100% No Radio Buffer Failure
300 44% 100% Radio Buffer Overflow after roughly 2200

message
400 15% 100% Radio Buffer Overflow after roughly 1300

Messages
500 13% 96% Radio Buffer Overflow after roughly 600 Mes-

sages

To study the scalability as well as the delay, we performed a set of experiments

where the server published message at a rate of 20 MPS to the topic “common”

while we varied the number of robots. The results, presented in Fig. 7.4, demon-

strates that typically the minimum delay is ≈ 20ms which is justifiable as typical

packet transfer time in an IEEE 802.15.4 network is ≈ 10− 20ms. Figure 7.4 also

demonstrates that the individual delay experienced by the robots are different. This

difference in delay is deterministic (≈ 8 ms) and due to the operation principle of

MQTT-SN (not ROMANO) where the broker dispatches broadcast messages via

sequential unicast messages to one subscriber node at a time. This suggests that

there is a linear relationship between the maximum delay over ROMANO with the

number of subscribed robots on that topic.
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In terms of reliability, ROMANO can provide a device to broker reliability by

using reliability feature of the MQTT-SN with different QoS modes. In the current

version, ROMANO does not have any end-to-end reliability. But one can easily

add some level of reliability by using the feature of heartbeat message where each

device periodically sends a ‘heartbeat’ message to the ‘common’ topic to inform all

nodes about its presence and adding a logic to send messages to a device only if a

heartbeat message was received. If a heartbeat message has not been received, the

sender can queue it until the destination device rejoins the network.
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Figure 7.4: Scalability Analysis of the ROMANO Protocol

Note that in this study we do not compare this performance with other protocols

as we were unable to find another overlay protocol for robotic networks with a

focus on lightweight, low power communications. Of course, ROS architecture

gives similar features as our proposed ROMANO protocol. Nonetheless, to our

knowledge, there exists no generic lightweight low power version of ROS. In this
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study, we do not focus on higher power robots with fully functional computers

running Linux with WiFi.

7.2.3 Application Implementation Experiments

To test and analyze how our protocol works, we have implemented and tested

four different applications detailed as follows. The videos from the experiments are

available at https://anrg.usc.edu/www/research/robotic-networks/romano/.

7.2.3.1 ROMANO for control of a group of robots

In this implementation, we mainly use the ROMANO Movement control message

format. We have implemented a movement control thread in each robot, which

wakes up upon receiving a movement control message via the ROMANO protocol

and executes the movement instructions (e.g. move left or right by a fixed amount).

The movement control messages can be published to any topics. Therefore, to

control a subgroup of robots in a swarm, nodes can either publish to all target

ROMANO IDs or publish to a special topic subscribed by only the target subgroup.

To form a group, we can simply use the MQTT Sub/Unsub Control Message to

individually instruct the member robots to subscribe/unsubscribe to the respective

group topic.
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7.2.3.2 ROMANO Path Copy

In this application, we implement a very simple system where one 3pi robot runs

line-follower code that uses the five onboard reflective light sensors to follow a black

trail on the ground while it shares its telemetry information via ROMANO to a

certain topic. All the other robots listen for the telemetry and use the telemetry to

replicate the path. This illustrates how easily sensor data or any kind of data can

be shared between a group of low power low capability robots, and this also shows

how ROMANO can be used to control one robot from another.

7.2.3.3 ROMANO to Control Peer-to-Peer UDP Communication

In this implementation, two robots use ROMANO to control the UDP packet trans-

missions of one another and disperse while both robots maintain a certain radio

communication link quality level. We add two different custom packet types for this

purpose: “UDP-SEND-REQ” (0x11) and “UDP-SEND-GO” (0x12). To illustrate

the application, we describe a sample sequence of events between a robot A and

robot B (presented in Fig. 7.5) as follows. First, robot A publishes a UDP-SEND-

REQ message to robot B and receives a UDP-SEND-GO reply. Upon receiving

UDP-SEND-GO, Robot A transmits a broadcast UDP packet. Upon receiving the

UDP packet, Robot B record the Radio Signal Strength Information (RSSI) of that

packet. If the RSSI is above a user defined threshold RSSIth, the controller of

Robot B moves it away from A by a fixed step size ds. Similarly, if the value is less
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than RSSIth, Robot B will move closer to Robot A to improve the link quality.

After the movement step, robot A becomes ready to reply to a UDP-SEND-REQ

message from robot B (B is sending UDP-SEND-REQ messages at a regular inter-

val until A replies). This process continues indefinitely, and B will follow the same

procedure as A. The movement is restricted to forward and backward movement

along a black line to leverage the 3pi’s reflective sensors for simplicity. The whole

process is randomly initiated by one of the robots given the two are within range

of their radios.

Figure 7.5: Illustration of using ROMANO to control peer-to-peer UDP communi-
cation
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7.2.3.4 ROMANO over Internet

Until now, we discussed employing ROMANO over a single 802.15.4 network. In

this application, we show how ROMANO can be used between two networks of

robots bridged via the internet. The 802.15.4 networks use IPv6 address and

MQTT-SN protocol for communication while over the internet communication use

IPv4 address and MQTT protocol, illustrated in Fig. 7.6. It shows that ROMANO

is compatible with both IPv6 and IPv4 as well as both MQTT and MQTT-SN.

In this set of experiments, we continually send movement control commands to a

robot which in turn relays that information to another robot in a different network

bridged via the internet.

Figure 7.6: Application of ROMANO for communication between two robotic net-
works connected over internet.
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7.2.4 Outcomes of the Application Specific Experiments

Now, we briefly discuss some of our interesting findings from the application spe-

cific implementations and experiments. In the first set of experiments i.e., con-

trol of a group of robots via ROMANO, the system performed as expected with

100% delivery of control messages. We were able to seamlessly switch between

controlling different groups of robots as well as individual robots. For the sec-

ond set of experiments, i.e., sensor data sharing between robots, we observed

that while the messages the delivered in order with around 99.5% message de-

livery ratio, the delays between consecutive messages are not uniform. This has

to do with the wireless channel access time, variable delay in the software stack,

and the queueing of messages at the MQTT broker. Therefore, in the stream-

ing sensor data type application, one needs to be careful about the control logic

implementation. To illustrate, if each of the shared sensor data has a major

impact on the operation of the robots, extra precaution needs to be taken for

late or missing messages. The results of the third experiment i.e., controlling

UDP transmission with ROMANO, concur with our expected outcomes. It is ex-

pected that the robots will disperse until they reach each other’s communication

boundary and will keep oscillating to-and-fro in the boundary region. The videos

available at https://anrg.usc.edu/www/research/robotic-networks/romano/

clearly shows that the experiment outcomes align with the expected outcomes. The

outcomes of the last and final experiment i.e., ROMANO over the internet, also
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follow our expected outcomes. One interesting observation, in this case, is that

both robots follows same control instructions but with a substantial time offset.

This delay is mainly caused by the propagation time over the internet as well as

the relaying delay.

7.2.5 Code Complexity Analysis

In this section, we compare the code complexity of the ROMANO based implemen-

tations. One key feature of the ROMANO protocol is that it simplifies the job of

an application developer for an RWN. Due to complexity and inter-dependencies,

an RWN application developer, ideally, needs to have knowledge about a range of

diverse topics such as communication stack, wireless communication, and control.

This hinders the progress of the RWN domain as typical application developers lack

deep knowledge about embedded communication stacks and networking. In that

context, ROMANO offers a simple abstraction that does not require deep under-

standing of the underlying communication stack. Moreover, it reduces the amount

of effort required from application developers to implement a new functionality.

We characterize the effort required from a developer in terms of the line of codes

(LOC) to be written for each application. To this end, we compared the LOC for

implementing the functionalities required for the above mentioned four applications

with and without ROMANO in our in-house RWN testbed. To calculate the LOC

without ROMANO, we count both the application specific number of lines that is
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implemented on top of ROMANO, say x, and the lines of codes it uses (through

function calls etc.) from ROMANO, say y. Then the LOC for writing that appli-

cation with ROMANO is x and the LOC for writing it without ROMANO is x+ y.

The results are presented in Table 7.5.

Table 7.5: Code Complexity Analysis in Terms of Lines of Codes

Functionality With ROMANO Without ROMANO

Subscribe/Publish 7 889

Movement Control 107 962

Path Copy 209 1027

UDP Control 257 1295

In the first application, discussed in Section 7.2.3.1, we mainly require two

functionalities: (1) dynamic update of the MQTT-SN subscriptions on the RWN

nodes without any need of manual configuration and (2) movement control of the

robots over MQTT-SN. To implement the first functionality, ROMANO reduces

the LOC by more than 100 fold, as shown in Table 7.5. The LOC for MQTT-SN

based movement control is also reduced by approximately 800 lines by the usage

of ROMANO. Moreover, in our testbed implementation, ROMANO simplifies the

coding to only one embedded platform i.e., MBED, instead of the originally re-

quired multi-platform code. The second application, i.e., ROMANO based path

copy (discussed in Section 7.2.3.2), is also implemented with approx. 800 less LOC

than implementation without ROMANO. The third application, i.e., ROMANO
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based UDP transmission control application (discussed in Section 7.2.3.3), requires

approx. 1000 less LOC due to usage of ROMANO. This is the most complex im-

plementation among the four application. Lastly, the ROMANO over internet, dis-

cussed in Section 7.2.3.4, requires only the Movement Control functionality which

is already discussed in the context of the first application. Also note that the LOC

with ROMANO for all cases except the Subscribe/Publish mainly includes the ap-

plication specific robotic control code. In all cases, the application specific LOC

does not include any 802.15.4 standard protocol stack coding. In summary, RO-

MANO significantly reduces the LOC required to implement complex applications

in an RWN as well as simplifies the process.

7.3 Discussion

In this study, we presented a novel overlay protocol called ROMANO that works on

top of MQTT-SN to provide a light-weight, scalable and low power communication

abstraction for sensing and control in a wireless network of robots. We also de-

veloped a real system on a robotic testbed consisting of five Pololu 3pi robots and

performed a set of evaluations for the proposed ROMANO protocol. Through a set

of four different application implementations, we demonstrate how the ROMANO

protocol can be used in different application contexts of a robotic wireless network.

Morever, we imagine an RWN to include a group of comparably high power robots

such as the Trackbot from Study 1, which will act as a distributed set of ROMANO

191



brokers and MQTT Servers. In such an RWN, ROMANO can be easily used for all

sorts of communication towards achieving certain end goals.
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Chapter 8

Passive RF Sensing in RWN

Over last decade, Radio Frequency (RF) signal based sensing has become very

popular among researchers due to its ubiquitous nature and a wide range of ap-

plicability.1 One obvious application context is the mapping of unknown areas

with a network of robots [63, 8]. In this study, we present a proof-of-concept

low-power IEEE 802.15.4 standard based bistatic radar [62] system for localizing

unknown radio-wave reflecting objects in an unknown environment. Unlike prior

multi-antenna based approaches, we employ a single standard low power omnidirec-

tional transmitter with known transmission parameters and a single rotating direc-

tional receiver antenna to collect a set of directional RSSI samples and, thereafter,

exploit the directionality information of the samples to determine the locations of

the reflecting objects. To this end, we employ the well-known Maximum Likelihood

Estimator (MLE) to extract the required information from the collected RSSI sam-

ples. Note that a bistatic radar [62] is a well-known RF system that is composed of

1The material in this chapter is based in part on the work in [163].
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a transmitter and a receiver separated by a large distance compared to the distance

to an object. A bistatic-radar employs the difference in the path lengths traveled

by a direct path signal and a multipath signal reflected by an object to passively

localize the object.

One motivation for our investigation into building this system was our interest-

ing findings in the course of our first study. In the ARREST experimentation during

our first study, we observed that the received angular RSSI pattern at the Track-

Bot includes prominent hints of multi-path components which in turn indicates the

presence of reflective surfaces. This motivated us to look into the possibility of

employing the TrackBot system for mapping purpose instead of localization and

tracking. Through a set of simulation and real experiments with the Trackbot,

we demonstrate the potential of the proposed concept. To our knowledge, this is

the first bistatic radar system demonstrated with low-cost low power off-the-shelf

802.15.4 radios.

8.1 Problem Formulation

In this section, we explain the problem formulation and our proposed system design

in details. Let there exist a set of N reflecting point objects2 in a 2D unknown envi-

ronment with known dimensions, say DG ×DG square region. Denote the location

2For simplicity, we ignore the dimensions of the reflecting objects and represent them by the
points of reflection on the objects.
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of the point reflectors as XR = {X i
R = (xiR, y

i
R)|i = 1, · · ·N}. Our objective is to

estimate the unknown N and also the unknown location set XR.

Our proposed system consists of a single directional antenna based receiver

(Rx) with known gain pattern, ga = {g(−180+i·δ) : i ∈ Z and i ∈ [0, 360/δ)} where

δ is the angular scanning granularity and g(φ) refers to the antenna gain along φ

direction, and a single omnidirectional antenna based transmitter (Tx). Now, let

the environment be modeled as a 2D discrete grid space with origin at the receiver

location and positive y-axis direction of the 2D space along the 0◦ orientation of

the receiver. The length of a side of each grid (dG) is a parameter to control

the granularity of the estimation. The number of grid point is n2
G with the set

of locations denoted as XG = {X i
G = (xiG, y

i
G)|i = 1, · · ·n2

G}. Let us assume

that the reflector locations and the transmitter location are restricted to the set of

the grid points, XG. Let us also denote the locations of the transmitter and the

receiver as XTx and XRx , respectively, and the distance between the Tx-Rx pair

as d. The directional rotating receiving antenna collects a set of RSSI samples3

for different angular orientation of the antenna, starting from −180◦ (orientation

toward negative y axis of the 2D reference frame) to 180◦ in steps of δ◦, to generate

a RSSI vector, ro = {r(−180+i·δ) : i ∈ Z and i ∈ [0, 360/δ)}. This RSSI vector is used

by the proposed MLE based reflector localization algorithm, detailed in Section 8.2.

3We do not employ the RF phase information as it is not readily available (unlike RSSI) in
most of the cheap, low power off-the-shelf radios.
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For the wireless channel modelling, we use standard log-normal fading model [18].

For directional antenna, the model can be described as follows.

PRx(θ) = C.g(θ).PTx .10Ψ/10 · d−γ(θ) (8.1)

where PRx(θ) is the received signal power along direction θ with respect to the

antenna orientation, g(θ) is the directional gain of receiving antenna, C is a constant,

PTx is the transmitter power, d(θ) is the distance travelled by signal incident along

angle θ, γ is the path loss exponent, and Ψ ∼ N (0, σ2) is the log normal fading noise

with variance σ2. If the signal is a reflected signal, there will be some attenuation

by the reflecting object which we denote by A(κ), where κ is the angle of incidence

on the reflecting object. However, for simplicity, we take a constant value A as the

attenuation constant. Also, note that the coefficient of reflection is just 1 for the

direct path component. Now, for each orientation of the receiver antenna, say, θo

with respect to positive y-axis, the measured RSSI is actually a sum of different

multipath components and can be represented as follows.

r′θo =
∑

θ∈[−180◦,180◦)

C.A.g(θ−θo).PTx .10Ψ/10 · d−γ(θ) (8.2)

where θ actually signifies the angle of the multipath component with respect to

the positive y axis (i.e, the rotating antenna’s base orientation). Now using (8.2)

for each possible set of reflector locations, XR, and transmitter location, XTx , we
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can mathematically estimate the resulting RSSI vector as rv = {r′(−180+i·δ) : i ∈

Z and i ∈ [0, 360/δ)}. Now the objective can be summarized as follows: find the

most likely location set XR such that, for a known (or unknown) location of the

transmitter XTx, the probability P(rv = ro) is the highest, where ro is the RSSI

observation vector and the cardinality of the set XR i.e., N , is also unknown.

Figure 8.1: Illustration of our bistatic radar equivalent system

8.2 Maximum Likelihood Estimation

In this section, we describe our maximum likelihood estimation [164] based ap-

proach for localizing a set of reflector objects. First, let us simplify the problem by

restricting our focus to a single reflector scenario with known transmitter location,
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XTx . Next, we calculate the log likelihood of each of the grid point X i
G to be the

reflector location, XR, as follows:

logL(ro|XR = X i
G, XTx) =

∑
θo∈[−180◦,180◦)

logP(r′θo = rθo|XR = X i
G, XTx) (8.3)

where we use Eqn (8.2) to estimate the probability P(r′θo = rθo|XR = X i
G, XTx).

Then we choose the grid position with the maximum value of the likelihood function

as the estimated reflector location.

XR = arg max
Xi
G

logL(ro|XR = X i
G, XTx) (8.4)

This requires O(n2
G) numbers of likelihood estimations where the number of grid

points, n2
G, depends on the search granularity, dG, and the size of the environ-

ment, DG. Now, if the location of the transmitter XTx is also unknown, the MLE

formulation can be written as follows.

{X,XTx} = arg max
{Xi

G,X
j
G}

logL(ro|XR = X i
G, XTx = Xj

G)

= arg max
{Xi

G,X
j
G}

∑
θo∈[−180◦,180◦)

logP(r′θo = rθo|XR = X i
G, XTx = Xj

G)

(8.5)

where i, j ∈ {1, n2
G}. This requires O(n4

G) numbers of likelihood estimation. Gen-

erally speaking, for a known number of reflectors (N), the MLE based approach

iterates through different subsets of the grid points, XG, as the possible set of the
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transmitter and reflector(s) locations and calculates the likelihood probability of

the observation vector rv. Through comparing these likelihoods of the measured

RSSI vector, we obtain the most likely location set for the reflectors and the trans-

mitter. Now, if N is also unknown, we need to perform likelihood for a range of

values of N as well. In such contexts, the MLE formulation can be expressed as

follows.

{X,XTx , N} = arg max
{XR,Xj

G,k}
logL(ro|XR, XTx = Xj

G, N = k)

= arg max
{XR,Xj

G,k}

∑
θo∈[−180◦,180◦)

logP(r′θo = rθo |XR, XTx = Xj
G, N = k)

(8.6)

where XR ⊂ Xk
G is a k dimensional vector with n2k

G possible values for N = k and

j ∈ {1, n2
G}.

8.3 Performance Evaluations

8.3.1 Simulation Experiment Results

To verify the localization performance of the MLE algorithm, we performed a set

of simulation experiments. The simulated RSSI data were generated based on the

standard path loss model [18] with log-normal fading noise Ψ with a maximum

standard deviation of σ2 = 5. The path loss exponent, γ, was set to be 1.856 in

order to match our real experiments, detailed later. The transmitter power PTX
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is set to be 7dBm to match the maximum transmission power of Openmotes [139]

used in real experiments.

To simulate the resultant RSSI for an environment with reflecting objects (XR),

the simulated RSSI values for the transmitter was superposed with simulated multi-

path RSSI values contributed by each of the reflective surfaces. We use a granularity

of δ = 1.8◦ to match the granularity of our real system implementation. The grid

granularity, dG, is set to be 1m since the standard RSSI based localization errors

are in the order of meters. The distance traveled by multipath components are

calculated using cosine rule as follows: dr =
√
d2 + d2

o − 2.d.do.cos(θo) +do where d

is the distance between the transmitter and the receiver, do is the distance between

the reflector and the receiver, and θo is the angle formed by the transmitter and

the reflecting object, at the receiver (illustrated in Fig. 8.1).

We performed the simulation experiment for a single reflector with a known

location of the transmitter as well as with unknown location of the transmitter.

In Fig. 8.2, we present the probability heat map for a single reflector with known

transmitter location. In this instance, the transmitter was placed at (0, 3) while the

receiver was located at (0, 0). The reflector was placed at (3, 3). Figure 8.2 shows

that the grid locations close to the actual position of the reflector have higher

probability according to MLE than any other grid locations. To further analyze

the performance, we vary the position of the reflector as well as the transmitter.

In Fig. 8.3, we present the error performance statistics for a fixed location of the
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Figure 8.2: Probability heat map of different possible positions of the reflector for
known position of transmitter (0, 3) and receiver (0, 0).

reflector at (3, 3) while the distance to the transmitter, d, is varied from 1m to

10m. Figure 8.3 illustrates that the performance of the MLE is worse when the

transmitter is much closer to the receiver than the reflector i.e., d << do. In this

case, the power of the reflected signal is much lower than the direct path power

from a nearby transmitter. As the distance between the transmitter and the receiver

(d) increases, the error decreases. Based on this observation, we hypothesize that

MLE detection performance improves when direct path power and the multipath

power are comparable, and deteriorates when the multipath power is much smaller

compared to the direct path power. To further verify this hypothesis, we fixed the
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location of the transmitter at (0, 3) and varied the distance between the receiver and

the reflector (do) from 1m to 10m. The experiment outcomes, illustrated in Fig. 8.4,

shows that with increasing distance to the reflector, the performance prominently

deteriorate. This validates our hypothesis.
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Figure 8.3: Error Statistics for varying distance between Tx and Rx while the
reflector is kept fixed at (3, 3)
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Figure 8.4: Error statistics for varying distance to the reflector from the receiver
while the Tx is kept fixed at (0, 3)

We also performed a small set of experiments with unknown locations of the

transmitter. In this set of experiments, the distance between Tx and Rx was varied
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while the reflector is kept static at (2, 2). The results are summarized in Table 8.1.

These results concur with the earlier results i.e., when the distance d is comparable

or higher than the distance do, the performance of the MLE based estimation is

better. It also shows that the error in the detection of the transmitter location is

very small (< 1m) in all three cases.

Table 8.1: Simulation experiment based error statistics (in meters) for unknown
transmitter and unknown reflector

Tx −Rx (Mean, Std) of Errors (Mean, Std) of Errors
Distance (d) in Tx location in reflector location

1m (0, 0) (3.7708, 3.9555)
2m (0.4, 0.2667) (2.2494, 0.5166)
3m (0.7, 0.4556) (2.5891, 1.0524)

8.3.2 Real Experiment Results

To test the practicality of the concept, we use the TrackBot system presented in

Fig. 4.1 where we mainly employ the rotating platform with the directional antenna

as illustrated in Fig. 8.5. For completeness, we provide a brief overview of the

portion of TrackBot system used for the experimentation.

The rotating receiver module of the TrackBot system, which we use for this

study, consists of a stepper motor, a stepper motor driver, and an embedded sensor

node (Openmote [139]) with an external directional antenna. Openmote is an open

hardware platform for implementing open source IoT standard protocols. It consists

of a TI 32-bit CC2538 @ 32 MHz with 512KB Flash memory, 32KB RAM, and

2.4GHz IEEE 802.15.4-based Transceiver connected via SMA plug. The directional
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antenna used is Rosewill Model RNX-AD7D that works for both WiFi bands, i.e.,

2.4MHz and 5GHz, with maximum Gain of 5dBi and 7dBi, respectively. The Half

Power Beam Widths (HPBW) of the antenna are 70◦ and 50◦ for 2.4GHz and 5GHz,

respectively.

Figure 8.5: Real System for Experimentation: We only employ the rotating plat-
form with the directional antenna (left) of the TrackBot (right) developed in the
course of Study 1.

The whole idea of using an antenna with such a wide directional HPBW is to

demonstrate that the system can be built with cheap, off-the-shelf antennas instead

of costly, custom solutions. In this system, the transceiver of the Openmote is

switched with the directional antenna. The Openmote with the directional antenna

is mounted on a stepper motor using a mounting plate. The stepper motor used for

this purpose is a Nema 17, 4-wire bipolar motor of dimension 1.65′′× 1.65′′× 1.57′′

with step size of 1.8◦ (200 steps/rev). The Rated current is 2A and the rated

resistance is 1.1 Ohms. The motor driver used for this purpose is an EasyDriver -

Stepper Motor Driver. We use an mbed NXP LPC1768 for precise control of the

motor via the Easydriver. The Openmote sends interrupts to the mbed whenever
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it collects an RSSI measurement and sends the data through serial communication,

whereas the mbed generates proper output to turn the motor periodically by one

step, i.e., 1.8◦. In our implementation, the rotation directions are alternated in

consecutive cycles in order to avoid wire twisting issues. The transmitter is this

case is a standalone Openmote. For programming of the Openmotes, we used the

open source RIOT OS [144] for low power IoT Devices. The rotating antenna

platform completes a full scanning in 2s to generate the output RSSI vector, ro.

This RSSI data is then fed to a computer via USB for processing. The size of the

entire robot is roughly 8′′ × 8′′ × 8′′.

With this system, we collected a set of real measurement data via a range of

experiments in a controlled anechoic chamber environment with precise control over

the reflector locations. The anechoic chamber prevents uncontrollable reflection of

radio waves from any surrounding surface not accounted for. The transmitter was

placed at ≈ 0◦ with respect to the receiver antenna assembly. We performed the

experiment for three sets of configurations with a single reflector. We used a metallic

plate as a reflector with the center located at ≈ (1, 1) in the 2D space illustrated in

the problem formulation. An illustration of the experiment is presented in Fig. 8.1.

For each configuration, we collected 100 sets of RSSI vector. We fed this vectors

to a MATLAB code to process the data and estimate the location of the reflector.

We varied the distance d between the transmitter and the receiver to be 1m, 2m,

and 3m, respectively. The granularity of the search grid, dG, is set to be 0.5m
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in this set of experiments. For this set of experiments, we calculated the path

loss exponent (γ = 1.856) and the constants in Eqn (8.2) based on some initial

RSSI measurements. We use a transmission power of PTx = 7dBm which is the

maximum transmission power of the Openmote. Note that, in these experiments,

some extra unaccountable errors are still introduced by the fact that the reflector

is not a point source. The error statistics for this set of experiments is presented

in Table 8.2. The results suggest that the proposed system performs well with an

error in the order of meters. The similar performance in all three cases is justified

by the fact that d and do are comparable for all three cases. With this system, one

can potentially achieve reasonable mapping performance up to ≈ 6m separations

among the transmitter, the receiver, and the reflectors.

Table 8.2: Error statistics for real-world experiments in meters

Tx −Rx Distance (d) Mean of Errors Std of Errors
1m 0.9m 0.1m
2m 1.4m 0.1m
3m 0.7m 0.2m

8.4 Discussion

In this study, we have presented a proof of concept method of employing a single RF

transmitter and a single RF receiver toward passively localizing reflecting objects

which can be potentially extended to a full-fledged mapping of the environment.

We use an MLE based estimation method for this purpose. Based on some base
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simulation and real-world experiments, we demonstrated that the proposed system

works with reasonable performance for a single unknown reflector with both known

and unknown location of the transmitter. This system can be easily integrated

with the ARREST system presented in Chapter 4 to build an integrated system

for relative localization, tracking, and mapping in an RWN deployment context.

Nonetheless, the MLE based approach is definitely not scalable as the search space

increases exponentially with the number of unknowns. Thus, the research direction

for a more scalable and efficient approach with similar performance guarantees is

still open.
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Chapter 9

Conclusion

With robots being heavily integrated into our daily life, there is an increasing

focus towards employing a network of robots to collaboratively perform a set of

tasks such as exploration of unknown terrains or providing temporary communi-

cation backbone. This has led researchers to invest significant attention towards

the cutting-edge field of Robotic Wireless Networks with main focus on the inte-

grated communication and control systems. The controllability of the robotic nodes

has opened up a whole new dimension in the design of tradition solutions such as

communication protocols and localization techniques for RWN. Moreover, the net-

working between controllable moving agents has imposed additional demands on

the traditional communication protocols such as light-weight communication, low-

bandwidth communication, and timeliness.

In this thesis, we addressed key problems pertaining to five key areas of research

in RWN:
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• Localization and Relative Positioning

• Communication-Aware Robot Positioning

• Network Layer Protocol: Routing Protocols

• Application Layer Protocol: Unified Protocol for Control and Sensing

• RSSI Models, Measurements, and RF mapping

All these work combined leads towards a Robotic Wireless Network system

where the developed miniRadar system is used for modeling communication char-

acteristics as well as mapping of an unknown environment, the ARREST system is

used for relative localization and maintaining certain distance that is required for

connectivity and good communication links, the HDCP routing protocol is used as

the underlying routing protocol, ROMANO is the overlay application layer com-

munication and control protocol, and finally the calculated bound is used to choose

the number of robots to deploy to support certain communication demands. There-

fore, this thesis is not just meant to provide solutions to some individual problems.

Rather, it is meant to provide starting points and guidelines for building a complete

robotic wireless network system with the main focus on communication oriented

application such as using the RWN to support a temporary wireless communication

backbone. All the studies are presented with sufficient details and pointers to open-

source material for any researcher to replicate the systems for further research.
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