Design of two-channel quadrature mirror filter banks using differential evolution with global and local neighborhoods


This paper introduces a novel method named DEGL (Differential Evolution with global and local neighborhoods) regarding the design of two channel quadrature mirror filter with linear phase characteristics. To match the ideal system response characteristics, this improved variant of Differential Evolution technique is employed to optimize the values of the filter bank coefficients. The filter response is optimized in both pass band and stop band. The overall filter bank response consists of objective functions termed as reconstruction error, mean square error in pass band and mean square error in stop band. Effective designing can be performed if the objective function is properly minimized. The proposed algorithm can perform much better than the other existing design methods. Three different design examples are presented here for the illustrations of the benefits provided by the proposed algorithm

International Conference on Swarm, Evolutionary, and Memetic Computing